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Abstract

We consider a random diffusion dynamics for an infinite system of hard spheres of two
different sizes evolving in Rd, its reversible probability measure, and its projection on the
subset of the large spheres. The main feature is the occurrence of an attractive short-range
dynamical interaction – known in the physics literature as a depletion interaction – between
the large spheres, which is induced by the hidden presence of the small ones. By considering
the asymptotic limit for such a system when the density of the particles is high, we also obtain
a constructive dynamical approach to the famous discrete geometry problem of maximising
the contact number of n identical spheres in Rd. As support material, we propose numerical
simulations in the form of movies.
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1 Introduction: the model and its configuration space

Consider hard spheres randomly oscillating in a bath of very small particles (see Figure 1) which
are themselves independently randomly vibrating. As soon as two hard spheres are very close,
one can observe the appearance of a strong mutual attraction which forces them to stay close
together for a certain random amount of time. As no external force is acting on the system, this
is a quite surprising phenomenon. What is going on?

To provide an answer, we propose a mathematical formulation of this apparent paradox: in
the introductory section, we first present the classical Asakura–Oosawa model from Chemical
Physics, and then describe the mathematical setting of this work.

1.1 The origin of the model: a short heuristic

The model is the following: spheres of equal radius r̊ evolve in a bath of much smaller ones with
radius ṙ ≪ r̊. The radius ṙ is called depletion radius for a reason which will become clear later.
The larger spheres are hard in the sense that they cannot overlap: their interiors must always stay
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Figure 1: Identical hard spheres in a bath of identical small particles. An ideal mathematical represen-
tation (left) and a culinary realisation (right, jelly doughnuts in particles of frying oil).
Left: the orange depletion shells around the brown spheres overlap.

disjoint. The smaller spheres – called particles for clarity – which compose the (random) medium
are also not allowed to overlap the large ones. This leads to the presence of a virtual spherical
shell around each large sphere, corresponding to the zone in which the centres of the particles
are not allowed, see Figure 1 (left). This zone, called depletion shell, will play a fundamental role
in what follows. Finally, because of their small radii, the particles can be viewed as an ideal gas,
i.e., they can overlap each other. In Figure 1, a realisation of this model; the region coloured in
orange is the union of the depletion shells.

This model is known in the physics literature as AO-model in reference to the seminal work
of S. Asakura and F. Oosawa, who introduced in [1, 2] a size-asymmetric binary mixture in the
Euclidean space R3 to describe colloids (large spheres) in a bath (or emulsion) of ideal polymers
(the small particles) in the context of Chemical Physics, see also [25]. The reader may refer
to [19] for a clear overview of the physical phenomenon and its modelling. Its importance is
underlined by Binder, Virnau and Statt in [5]: “Since 60 years the Asakura–Oosawa model,
which simply describes the polymers as ideal soft spheres, is an archetypal description for the
statistical thermodynamics of such systems, accounting for many features of real colloid-polymer
mixtures very well.” Indeed the bath of polymers induce a new attractive interaction between
the colloids, called effective or depletion interaction. For a physical theoretical analysis of this
general phenomenon see, e.g., [20] and the valuable monograph [18]. As an illustration of the
effect of the depletion force one can cite the ordered, helical conformation of long molecular
chains like DNA in the Euclidean space R3 by interpreting this geometric structure as being
thermodynamically induced by the entropy minimisation of depleting spheres, see [23].

A first rigorous mathematical treatment of the AO-model for an infinite number of both
sphere types with methods of Statistical Mechanics appeared only recently in a series of papers
by S. Jansen and coauthors, see [14, 15, 26].

1.2 The mathematical model

The geometric objects we deal with in this paper are spheres of two different types: the hard
spheres with fixed radius r̊ and the particles with radius ṙ < r̊. They are identified by the
position of their centres in Rd; if a point x ∈ Rd is the centre of a hard sphere we denote it
by x̊, if it is the centre of a particle we denote it by ẋ. In this way we can consider the set
X = X̊

⊔
Ẋ ≃ Rd×{◦, · } as duplication of Rd, to distinguish between the two types of spheres.

Throughout the paper, the number of hard spheres will be finite and fixed, equal to n ≥ 1.

The configuration space of the system is the set M of σ-finite Radon point measures on X,
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i.e., those of the form

x = x̊+ ẋ =

n∑
i=1

δx̊i +
∑
k∈K

δẋk , x̊i ∈ X̊, ẋk ∈ Ẋ, K ⊂ N∗,

such that for any compact Λ ⊂ X, x(Λ) < +∞.
With this formalism, x̊ denotes the point measure of centres of hard spheres belonging to

the configuration x and ẋ denotes the point measure of centres of the particles in x. As the
point measures we consider are a.s. simple, we can use the notation x interchangeably for the
point measure or for its support {x̊i, ẋk, 1 ≤ i ≤ n, k ∈ K} ⊂ Rd. We write the sum of two
point measures as the juxtaposition x̊ẋ := x̊ + ẋ. For m ∈ N, let Mm ⊂M be the set of finite
configurations with exactly m particles, that is

Mm := {x = x̊ẋ ∈M, ẋ(Ẋ) = m}.

It is used in the first step of the proof of Theorem 2.1 to approximate the infinite configurations.
We write M̊ (resp. Ṁ) for the point measures supported only by hard spheres (resp. particles).

In the following, B(y, r) denotes the closed ball in Rd centred in y ∈ Rd with radius r ∈ R+.

The so-called admissible configurations, i.e., those respecting the non-overlap constraint,
make up the following subset D ⊂M:

D =

{
x̊ = x̊ẋ ∈M :

∀i ̸= j, |̊xi − x̊j | ≥ 2̊r,
∀i, k, |̊xi − ẋk| ≥ r̊ + ṙ

}
. (1.1)

The second type of constraints in (1.1) can be interpreted as follows: around each hard sphere
B(̊xi, r̊) there is a shell of thickness ṙ, called depletion shell, that is forbidden for the centres of
the particles (ẋk)k, see Figure 1. We therefore introduce the radius �

r , seen as an enlargement of
the original hard-sphere radius r̊:

�
r := r̊ + ṙ = r̊ (1 + ρ), where ρ :=

ṙ

r̊
∈ [0, 1[ , (1.2)

and identify the forbidden area for particles around the admissible configuration of hard spheres
x̊ as the interior of

B(̊x) :=
n⋃
i=1

B(̊xi,
�
r) ⊂ Rd. (1.3)

As we will see in the paper, the relative size ρ between particle and hard sphere radii, defined in
(1.2), plays an important role in the study of this two-size model.

Our aim here is to present and study a dynamical version of the AO-model and its depletion
feature. We first construct, in Section 2, infinite-dimensional random diffusion dynamics whose
reversible (i.e., equilibrium) measure is the AO-Model for n hard spheres in a bath of infinitely
many particles. Section 3 is devoted to the study of the projection of this two-type reversible
measure onto the subsystem of hard spheres. We first notice how it induces a new attractive
interaction (in the sense of Statistical Mechanics) between the hard spheres, called depletion
interaction. This new term is induced by the hidden presence of the particle bath and is propor-
tional to the volume of the depletion shells around the hard spheres, see Proposition 3.1. Detailed
computations and geometric comments in particular cases are then presented. Moreover, a gra-
dient random dynamics associated to this measure is proposed in Section 3.2. In Section 3.3, we
consider the asymptotic regime corresponding to the system of n spheres in a bath with a very
high density of particles. The depletion interaction thus dominates the system to the extent that
the reversible measure concentrates on n hard sphere configurations in Rd which maximise their
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contact number. In this way, we obtain a constructive random dynamical approach via gradient
diffusions to the difficult problem of optimal sphere packing for any number n of spheres and in
any dimension d.

In order to get an understanding for the behaviour of the two-type dynamics of Section 2,
as well as of the gradient random dynamics with depletion studied in Section 3.2, we decided to
write code for simulations. The link to the GitLab page is provided in Section 4, along with a
short presentation of the animations one can find there.

2 Diffusion of hard spheres in an infinite bath of Brownian par-
ticles

Finding appropriate random dynamics that describe the time evolution of various two-type phys-
ical systems is an old challenge. See, e.g., the mechanical model of Brownian motion proposed in
[8] for the motion of a large component whose velocity follows an Ornstein-Uhlenbeck diffusion in
an infinite bath of small particles; [22], in which a Brownian sphere interacts with infinitely-many
particles of vanishing radius; [7], in which the authors exhibit a kind of Archimedes’ principle for
a large disc evolving as a Brownian motion with drift (due to the force of gravity) in a one-sided
open cylinder of R2, submerged in a large number of much smaller discs.

Despite the vast literature, to the best of our knowledge, there is no study that takes into
account a two-type hard-core interaction. The specificity of our approach lies therefore in the
construction of a strong solution to an infinite-dimensional stochastic differential system for a
two-size model of large hard spheres and small particles that are diffusing under the infinitely
many non-overlap constraints (1.1). The main technical difficulty consists in controlling the
reflection at the boundary of the set of admissible configurations, expressed mathematically as
infinitely many local-time terms appearing in the stochastic differential equation (SDE) that
describes the time evolution of each sphere.

2.1 Existence and uniqueness result for an infinite-dimensional random dy-
namics with reflection

We now introduce and study the random evolution in Rd of our two-type system. To simplify,
we restrict the time evolution to the time interval [0, 1], noting that it can be extended by
Markovianity to any time interval.

The system is described as follows:

• n hard spheres with radius r̊, whose centres at time t are denoted by {X̊1(t), . . . , X̊n(t)}, move
according to n independent Brownian motions.

In order to avoid their dispersion at infinity, they are smoothly confined around the origin by
a self-potential ψ̊ : Rd → R of class C2 with bounded derivatives and satisfying∫

Rd
exp

(
− ψ̊(x)

)
dx = 1 and

∫
Rd
|x|2 e−ψ̊(x) dx < +∞. (2.1)

It is simple to show that such a function (having linear growth with respect to the Euclidean
norm at infinity) exists. Moreover, the measure

λ(dx) := exp
(
− ψ̊(x)

)
dx

is a probability measure with second moment, and plays a reference role in what follows.

• The hard spheres evolve in a time-inhomogeneous random medium consisting of a field
∑

k δẊk(·)
of intensity ż of infinitely many small particles, themselves moving according to σ̇-scaled in-
dependent Brownian motions.

4



• The only interactions between the hard spheres and the small particles are due to the non-
overlap constraints (1.1), in the sense that, at each time, the two-type configuration should
be admissible.

We can then describe this two-type dynamics with the following infinite-dimensional SDE with
reflection:



for i, j ∈ {1, . . . , n}, k ∈ N∗, t ∈ [0, 1],

X̊i(t) = X̊i(0) + W̊i(t)−
1

2

∫ t

0
∇ψ̊
(
X̊i(s)

)
ds

+
n∑
j=1

∫ t

0

(
X̊i(s)− X̊j(s)

)
dLij(s) +

∑
k≥1

∫ t

0

(
X̊i(s)− Ẋk(s)

)
dℓik(s),

Ẋk(t) = Ẋk(0) + σ̇ Ẇk(t) + σ̇2
n∑
i=1

∫ t

0

(
Ẋk(s)− X̊i(s)

)
dℓki(s),

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0
1|X̊i(s)−X̊j(s)|=2 r̊ dLij(s), Lii ≡ 0,

ℓik(0) = 0, ℓik ≡ ℓki, ℓik(t) =

∫ t

0
1|X̊i(s)−Ẋk(s)|=r̊+ṙ dℓik(s), ℓii ≡ 0,

(S)

where the i.i.d. sequences of Rd-valued Brownian motions (W̊i)i=1,...,n and (Ẇk)k∈N∗ are inde-
pendent.

The local times (Lij)i,j∈{1,...,n} ensure that the hard spheres do not overlap pairwise. In
case of a collision, they are submitted to an instantaneous repulsion corresponding to a normal
reflection at the boundary of the set of admissible configurations. Analogously, the local times
(ℓik)i∈{1,...,n}, k∈N∗ ensure that the small particles do not overlap with the hard spheres.

The gradient term ∇ψ̊ guarantees that, in the absence of small particles, the large spheres
undergo a recurrent diffusive motion whose unique reversible probability measure is known. The
diffusion coefficient σ̇ parametrises the mobility of the small particles.

We can now state the main result of this section.

Theorem 2.1. The infinite-dimensional SDE with reflection (S) admits for µ-almost every
deterministic initial condition a unique D-valued strong solution, where the probability measure
µ, concentrated on D, is given by (2.8).

The rest of this section is devoted to the proof of the above theorem. We split it into four
steps, taking inspiration from, and generalising, the existence theorem obtained in [10] for an
infinite-dimensional diffusion with reflection of equal (one-size) spheres:

Step 1: Dynamics for n hard spheres and m confined particles.

We first approximate the above infinite-dimensional dynamics by a two-type dynamics con-
cerning only a finite number m ≥ 1 of particles. Moreover, we confine them by adding to their
dynamics a restoring gradient drift that prevents their dispersion. The resulting dynamics is
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then described by the following finite-dimensional SDE:

for i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, t ∈ [0, 1],

X̊i(t) = X̊i(0) + W̊i(t)−
1

2

∫ t

0
∇ψ̊
(
X̊i(s)

)
ds

+
n∑
j=1

∫ t

0
(X̊i − X̊j)(s)dLij(s) +

m∑
k=1

∫ t

0
(X̊i − Ẋk)(s)dℓik(s),

Ẋk(t) = Ẋk(0) + σ̇ Ẇk(t)−
σ̇2

2

∫ t

0
∇ψ̇R

(
Ẋi(s)

)
ds

+ σ̇2
n∑
i=1

∫ t

0
(Ẋk − X̊i)(s)dℓki(s),

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0
1|X̊i(s)−X̊j(s)|=2̊r dLij(s), Lii ≡ 0,

ℓik(0) = 0, ℓik ≡ ℓki, ℓik(t) =

∫ t

0
1|X̊i(s)−Ẋk(s)|=r̊+ṙ dℓik(s), ℓii ≡ 0.

(Sm,R)

where W̊i, 1 ≤ i ≤ n, Ẇk, 1 ≤ k ≤ m, are independent Rd-valued Brownian motions.
The function ψ̇R : Rd → R+ confining the particles is of class C2 with bounded derivatives.

Moreover, it depends on the parameter R ∈ N in the following way:

ψ̇R(x) = 0 if x ∈ B(0, R) and
∞∑
R=1

∫
B(0,R)c

e−ψ̇
R(x) dx < +∞. (2.2)

Since it vanishes in the ball B(0, R), its confining effect decreases and eventually disappears as R
tends to infinity. Such a function can be constructed, e.g., by defining it proportional to |x| −R
for x far from the origin.

Consider a convex C∞ function φ such φ(t) = 0 if t ≤ 0 and φ(t) = t − 1 if t ≥ 2.

−2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1

2

φ

Let ψ̇R(x) = φ
(
Rd+1(|x| − R)

)
. By construction, ψ̇R is smooth with bounded derivatives

and vanishes on B(0, R). A change of variables in hyperspherical coordinates leads to∫
|x|>R

e−ψ̇
R(x) dx

=

∫ +∞

R

∫ 2π

0

∫
]0;π[d−2

e−ψ̇
R(u) ud−1 sind−2(θ2) sin

d−3(θ3) · · · sin(θd−1) dθ2 · · · dθd−1 dθ1 du

= Sd+1

∫ +∞

R
ud−1 e−φ(R

d+1(u−R)) du

=
Sd−1
Rd+1

∫ +∞

0

( v

Rd−1
+R

)d−1
e−φ(v) dv

where Sd−1 denotes the surface of the unit sphere in Rd. Since (a+ b)d−1 ≤ 2d−2(ad−1 + bd−1)∫
|x|>R

e−ψ̇
R(x) dx ≤ 2d−2

Sd−1
Rd+1

∫ +∞

0

(
vd−1

R(d−1)2 +Rd−1
)
e−φ(v) dv

≤ 2d−2Sd−1

R(d−1)2+d+1

∫ +∞

0
vd−1e−φ(v) dv +

2d−2Sd−1
R2

∫ +∞

0
e−φ(v) dv
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Since both
∫ +∞
0 vd−1e−φ(v) dv and

∫ +∞
0 e−φ(v) dv are finite, this implies the convergence of the

series
∑

R

∫
|x|>R e

−ψ̇R(x) dx.

We define the set of finite admissible configurations with m particles as Dm := D ∩Mm.

Proposition 2.2. The SDE with reflection (Sm,R) admits, for any deterministic initial condition
in the interior of the domain Dm, a unique strong solution(

X̊m,R
i (t), Ẋm,R

k (t), Lm,Rij (t), ℓm,Rik (t)
)
t∈[0,1], 1≤i,j≤n, 1≤k≤m .

The finite measure νm,R, concentrated on the admissible configurations with m particles, and
given by

νm,R(dx) := 1Dm(x) e
−

∑m
k=1 ψ̇

R(ẋk) ⊗ni=1 λ(dx̊i) ⊗mk=1 dẋk, (2.3)

where x = {x̊1, . . . , x̊n, ẋ1, . . . , ẋm}, is reversible for the dynamics (Sm,R).

Remark 2.3. Due to the assumptions (2.2) satisfied by the confining potential ψ̇R, the measure
νm,R is mainly supported on configurations whose m particles are in or close to the ball B(0, R).
Moreover, the integral

∫
Rd e

−ψ̇R(x)dx is finite and increases at most polynomially in R when R
tends to infinity.

Proof of Proposition 2.2. The system (Sm,R) describes the dynamics of an (n+m)d-dimensional
gradient diffusion with reflection at the boundary of the domain Dm. The different sizes of the
hard spheres and the particles induces a new geometric complexity which did not exist in the
case of identical spheres studied in [10].

In [9], the first author solved the question of existence and uniqueness of a reflected diffusion
in a geometric domain whose boundary is induced by several constraints. There, the required
assumptions are (i) a regularity condition on each constraint; and (ii) a so-called compatibility
condition between the constraints. We check here that the domain Dm ⊂ Mm satisfies such
properties, as stated in [9, Definition 2.1].

The interior of the domain Dm can be described as the following intersection of sets:

int(Dm) =
⋂

1≤i,j≤n
j ̸=i

{
x ∈Mm : Γij(x) > 0

}
∩

⋂
1≤i≤n
1≤k≤m

{
x ∈Mm : γik(x) > 0

}
.

The C2 constraint function

Γij(x) = Γij (̊x) :=
|̊xi − x̊j |2

4̊r2
− 1 (2.4)

controls the distance between the hard spheres i and j, whereas the C2 constraint function

γik(x) :=
|̊xi − ẋk|2

�
r 2

− 1

controls the distance between the hard sphere i and the particle k. The boundary of Dm, then,
is a union of smooth boundaries, each one being the set of zeros of one constraint.
(i) Boundedness of first and second derivatives of the constraint functions.

We first prove that the norm of the gradient of each constraint function is uniformly bounded
from below on its induced boundary.

It is straightforward to check that, for x = {x̊1, · · · , x̊n, ẋ1, · · · , ẋm},
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• if Γij(x) = 0, i.e., |̊xi − x̊j |2 = 4 r̊2, then |∇Γij(x)|2 = 8 |̊xi − x̊j |2/16̊r4 = 2/̊r2 > 0;

• if γik(x) = 0, i.e., |̊xi − ẋk|2 =
�
r 2 then |∇γik(x)|2 = 8/

�
r 2 > 0.

Second derivatives are uniformly bounded from above because they are constant.

The constraints are of class C2 and their first derivatives are

∇Γij (̊x, ẋ) =
1

4̊r2
∇
(
|̊xi − x̊j |2

)
=

2

4̊r2

0, . . . , 0, x̊i − x̊j︸ ︷︷ ︸
ith of the n

first coordinates

, 0, . . . , 0, x̊j − x̊i︸ ︷︷ ︸
jth of the n

first coordinates

, 0, . . . , 0

 ,

∇γik (̊x, ẋ) =
1

�
r
2 ∇(|̊xi − ẋk|

2) =
2

�
r
2

0, . . . , 0, x̊i − ẋk︸ ︷︷ ︸
ith of the n

first coordinates

, 0, . . . , 0, ẋk − x̊i︸ ︷︷ ︸
kth of the m

last coordinates

, 0, . . . , 0

 .

If Γij (̊x, ẋ) = 0, i.e., |̊xi− x̊j |2 = 4̊r2, then |∇Γij (̊x, ẋ)|2/16̊r4 = 4(2|̊xi− x̊j |2/16̊r4 = 2/̊r2 > 0.
If γik (̊x, ẋ) = 0, i.e., |̊xi − ẋk|2 = (̊r + ṙ)2, then |∇γik (̊x, ẋ)|2 = 8/(̊r + ṙ)2 > 0.

Second derivatives are bounded because they are constant :

D2Γij (̊x, ẋ) =
1

4̊r2


0 0 0 0 0
0 2Id 0 −2Id 0
0 0 0 0 0
0 −2Id 0 2Id 0
0 0 0 0 0

 D2γik (̊x, ẋ) =
1

�
r
2


0 0 0 0 0
0 2Id 0 −2Id 0
0 0 0 0 0
0 −2Id 0 2Id 0
0 0 0 0 0

 .

Id represents the d× d identity matrix here. It appears at lines and rows i and j in the partition
of D2Γij into d × d blocks, and at lines and rows i and k in the partition of D2γik into d × d
blocks. The 0’s are null matrices.

(ii) Compatibility between the constraints.
We are now looking for a positive constant b0 such that, at any point x of the ij-boundary

(resp. ik-boundary) of Dm, there exists a non-zero vector v ∈ (Rd)n+m, such that

v · ∇Γij(x) ≥ b0 |v| |∇Γij(x)| (resp. v · ∇γik(x) ≥ b0 |v| |∇γik(x)|).

More precisely, if a configuration x = x̊ẋ belongs, e.g., to the ij-boundary, the hard spheres i and
j collide. Heuristically, the vector v indicates the most effective impulse for the configuration to
come back into the interior of the domain Dm, i.e., for the colliding spheres to get away from
each other as fast as possible. The compatibility condition requires that the maximum angle
between all these impulses, which is equal to 2 arccos b0, remains bounded away from π.

Fix x ∈ ∂Dm, and let C (̊xi) be the cluster around the i-th sphere x̊i (resp. C(ẋk) the cluster
around the k-th particle ẋk), that is, the set of all spheres or particles of x either touching x̊i or
belonging to a chain of spheres and/or particles in contact including x̊i (similarly for ẋk). We
define the centre of mass of such clusters by

m(̊xi) :=
1

#C (̊xi)

∑
xj∈C (̊xi)

xj and m(ẋk) :=
1

#C(ẋk)

∑
xj∈C(ẋk)

xj

and the vector v = v̊v̇ ∈ Rdn × Rdm by

v̊i := x̊i −m(̊xi) and v̇k := ẋk −m(ẋk).
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It is not difficult to show that

Γij(x) = 0 ⇒ v · ∇Γij(x)
|∇Γij(x)|

=
√
2̊r and γik(x) = 0 ⇒ v · ∇γik(x)

|∇γik(x)|
=

�
r√
2
.

Moreover, |v|2 ≤ 4̊r2(n+m)3. Therefore, one can choose b0 :=
�
r

2
√
2 r̊(n+m)3/2

> 0.

Note that b0 vanishes as m tends to infinity. Therefore, this method cannot be applied to
prove existence in the case m = +∞.

The idea is that, if some spheres or particles in x collide into clusters, the quickest way to
take them apart is to push them in the direction opposite to the mass centre of the cluster they
belong to.
Note that, if a ball does not collide with anybody, the corresponding component vanishes :
impulsion v is the physical distancing vector of x = x̊ẋ ∈ ∂Dm, it only moves balls which have
to be moved in order to avoid contact.
If |̊xi − x̊j | = 2̊r then C (̊xi) = C (̊xj) and m(̊xi) = m(̊xj) hence v̊i − v̊j = x̊i − x̊j

v · ∇Γij(x)
|∇Γij(x)|

=
1

4
√
2̊r

2(̊xi − x̊j) · (̊xi − x̊j) =
2(4̊r2)

4
√
2̊r

=
√
2̊r;

If |̊xi − ẋk| = r̊ + ṙ then C (̊xi) = C(ẋk) and m(̊xi) = m(ẋk) hence v̊i − v̇k) = x̊i − ẋk

v · ∇γik(x)
|∇γik(x)|

=
1

2
√
2(̊r + ṙ)

2(̊xi − ẋk) · (̊xi − ẋk) =
r̊ + ṙ√

2
.

Moreover, components of v vanish for clusters reduced to only one particle

|v|2 =
n∑
i=1

|̊vi|2 +
m∑
k=1

|ẋk|2 =
∑

C cluster s.t. ♯C≥2

∑
xi∈C

∣∣∣∣∣∣xi − 1

♯C

∑
xj∈C

xj

∣∣∣∣∣∣
2

=
∑

C cluster s.t. ♯C≥2

∑
xi∈C

∣∣∣∣∣∣ 1♯C
∑
xj∈C

(xi − xj)

∣∣∣∣∣∣
2

gives the upper bound

|v|2 ≤
∑

C cluster s.t. ♯C≥2

∑
xi∈C

 1

♯C

∑
xj∈C

|xi − xj |

2

≤
∑

C cluster s.t. ♯C≥2

∑
xi∈C

1

♯C

∑
xj∈C

|xi − xj |2

Two colliding particles are at distance at most 2̊r, so that the distance between two particles
from the same cluster is smaller than 2̊r(♯C − 1)

|v|2 ≤
∑

C cluster s.t. ♯C≥2

∑
xi∈C

4̊r2(♯C − 1)2 ≤ 4̊r2(n+m)3

Consequently, for each constraint γ = Γij or γ = γik such that γ(̊x, ẋ) = 0,

v

|v|
.
∇γ(̊x, ẋ)
|∇γ(̊x, ẋ)|

≥ r̊ + ṙ

2
√
2 r̊(n+m)3/2

> 0.
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Having proved that the constraints defining the domain Dm are compatible in the sense of
[9], we can now apply Theorem 2.2 therein, yielding the existence and uniqueness, for each initial
admissible configuration, of a strong solution to the SDE with reflection (Sm,R).

Its diffusion matrix is the
(
d(n+m)×d(n+m)

)
-block matrix of diagonal matrices

(
Ind 0
0 σ̇Imd

)
and its drift is given by the gradient of the potential function Φ(x) :=

∑n
i=1 ψ̊(̊xi) +

∑m
k=1 ψ̇

R(ẋk).
Applying [9, Theorem 2.5] (see also [21]), we get that 1Dm(x)e−Φ(x)dx is a time-reversible

measure for the dynamics (Sm,R). This concludes the proof of the proposition.

We have proved that the constraints are compatible in the sense of [9]. Thanks to Theorems
2.2 and 2.3 from this paper, for every invertible (n+m)×(n+m) matrix θ and every C2 function
Φ with bounded derivatives Rn+m, the SDE

X(t) = X(0) + θW(t)− 1

2

∫ t

0
θtθ∇Φ(X(s))ds+

∑
γ

∫ t

0
θtθ∇γ(X(s))dLγ(s)

has a unique strong solution in Dm for every starting configuration x ∈ Dm. Local timeLγ

satisfies Lγ(·) =

∫ ·
0
1γ(X(s))=0 dLf (s) The above sum is over all constraints. Moreover,

1Dm(x)e
−Φ(x)dx is a reversible measure for the solution.

Choosing θ =

(
Ind 0
0 σ̇Imd

)
and multiplying the local times by the constants if necessary (this

does not change their properties as local times), we get the following SDE

for i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , t ∈ [0, 1],

dX̊i(t) = dW̊i(t)−
1

2
∇iΦ(X̊, Ẋ)(t) dt+

n∑
j=1

(
X̊i − X̊j

)
(t)dLij(t) +

m∑
k=1

(
X̊i − Ẋk

)
(t)dℓik(t),

dẊk(t) = σ̇ dẆk(t)−
1

2
σ̇2∇kΦ(X̊, Ẋ)(t) dt+

n∑
i=1

(
Ẋk − X̊i

)
(t)dℓki(t),

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0
1|X̊i(s)−X̊j(s)|=2 r̊ dLij(s), Lii ≡ 0,

ℓik(0) = 0, ℓik ≡ ℓki, ℓik(t) =

∫ t

0
1|X̊i(s)−Pk(s)|=r̊+ṙ dℓik(s), ℓii ≡ 0.

With Φ(̊x, ẋ) =
n∑
i=1

ψ̊(̊xi) +
m∑
k=1

ψ̇R(ẋk), which is C2 with bounded derivatives on (Rd)n+m, the

above SDE is equal to (Sm,R).

Step 2: Localisation of the initial particles.
We consider again the finite-dimensional dynamics (Sm,R), and fit the number m of particles

to the confinement parameter R in the following way. Let x = x̊ẋ ∈ D be an admissible
configuration; we define the finite-dimensional process

Xx,R =
(
X̊x,R
i (t), Ẋx,R

k (t), Lx,R
ij (t), ℓx,Rik (t)

)
t∈[0,1], 1≤i,j≤n, 1≤k≤m

(2.5)

as the solution of the SDE (Sm,R) with initial condition x̊ for the n hard spheres and ẋ|R for
the particles, where ẋ|R denotes the subset of particles in ẋ which belong to the ball B(0, R).
Therefore, the corresponding dimension m = m(ẋ, R) is equal to the finite number #ẋ|R of
particles.
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For any continuous function f : [0, 1] → Rd, let w be its modulus of continuity, that is, for
any δ > 0, w(f, δ) := sup{|f(t)− f(s)|, |t− s| < δ}. We say that a continuous path is nice if it
stays away from the origin, or if its modulus of continuity w is bounded. More precisely, for any
α, δ, ε > 0, we define the set of (α, δ, ε)-nice paths as

N (α, δ, ε) :=

{
f : [0, 1]→ Rd continuous s.t. min

s∈[0,1]
|f(s)| > α or w(f, δ) ≤ ε

}
. (2.6)

Finally, for x ∈ D, we define an event Ωx ⊂ Ω, on which we will be able to construct the solution
of the infinite dimensional two-type dynamics (S), as follows:

Ωx :=
{
ω ∈ Ω : ∀R̊ ∈ N∗ ∃Ṙ ∈ N∗ ∀R ≥ Ṙ,

∀i ≤ n, X̊x,R
i (ω) ∈ N (R̊+

√
R,

1√
R
, 1),

∀k ≤ m(ẋ, R), Ẋx,R
k (ω) ∈ N (R̊+

�
r +
√
R,

1√
R
, 1),

∀i ≤ n, X̊x,R+1
i (ω) ∈ N (R̊+

√
R,

1√
R
, 1),

∀k ≤ m(ẋ, R+ 1), Ẋx,R+1
k (ω) ∈ N (R̊+

�
r +
√
R,

1√
R
, 1)
}
.

(2.7)

Step 3: Convergence on Ωx ⊂ Ω of the approximating processes.
In the proposition below, we show that, for any fixed admissible initial configuration x and

ω ∈ Ωx (which fixes the Brownian paths), the trajectories of a hard sphere (or a particle)
following the dynamics (Sm,R)R are the same as soon as R is large enough. This is due to the
fact that the confining function ψ̇R vanishes on an increasingly large area B(0, R) around the
origin. Therefore, the path sequence indexed by R converges. Note that this convergence holds
separately for each sphere and each particle, not for the process as a whole.

Proposition 2.4. Fix x in D. The sequence of paths
(
Xx,R(ω), ω ∈ Ωx

)
R∈N∗ defined in (2.5)

converges to a limit process denoted by Xx :=
(
X̊x
i , Ẋ

x
k , L

x
ij , ℓ

x
ik

)
1≤i,j≤n, k≥1

. This process is

solution on Ωx of the infinite-dimensional equation (S) with initial configuration x.

Proof. Fix x = x̊ẋ ∈ D and ω ∈ Ωx.
We first prove that, for fixed 1 ≤ i, j ≤ n and k ∈ N∗, the four path sequences(

X̊x,R
i (ω)

)
R
,
(
Ẋx,R
k (ω)

)
R
,
(
Lx,R
ij (ω)

)
R
,
(
ℓx,Rik (ω)

)
R

are eventually constant.

Note that this does not imply that the sequence of Rnd× (Rd)N∗-valued paths
(
Xx,R(ω)

)
R

is
eventually constant because theses paths have an infinite number of components, each of them
being constant for R larger than some R0 which depends on the component. For

(
Xx,R(ω)

)
R

to
be eventually constant, a uniform upper bound on those R0’s would be needed.

Choose R̊ := ⌈max{|̊xi|, 1 ≤ i ≤ n}⌉ , where ⌈z⌉ denotes the smallest integer larger than
z ∈ R. The initial position x̊i of the i-th hard-sphere centre belongs therefore to B(0, R̊).

Since both paths X̊x,R
i (ω) and X̊x,R+1

i (ω) belong to the set N (R̊+
√
R, 1/

√
R, 1), then

w
(
X̊x,R
i (ω), 1/

√
R
)
≤ 1 as soon as min

t∈[0,1]
|X̊x,R

i (ω, t)| ≤ R̊+
√
R,

and the same holds for X̊x,R+1
i (ω).
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Moreover, since a path with δ-modulus of continuity bounded by ε started in B(0, α) remains
in B(0, α+ ε

δ ) for the time interval [0, 1] then, taking α = R̊, δ = 1/
√
R and ε = 1, then

max
t∈[0,1]

|X̊x,R
i (ω, t)| ≤ R̊+

√
R as soon as min

t∈[0,1]
|X̊x,R

i (ω, t)| ≤ R̊.

The latter is verified by definition as

min
t∈[0,1]

|X̊x,R
i (ω, t)| ≤ |X̊x,R

i (ω, 0)| ≤ R̊.

The same argument holds for X̊x,R+1
i (ω).

This implies in particular that every particle Ẋx,R
k (ω) which collides with some hard sphere

X̊x,R
i (ω) belongs to B(0, R̊+

�
r +
√
R) at the time of the collision.

Since the path Ẋx,R
k (ω) belongs to N (R̊ +

�
r +
√
R, 1/

√
R, 1), if it collides with some hard

sphere, its (1/
√
R)-modulus of continuity is bounded by 1. The same argument holds for

Ẋx,R+1
k (ω). So, as particles that collide with a hard sphere at some time t ∈ [0, 1] cannot cover

more than a distance
√
R in the time interval [0, 1], their paths stay in the ball B(0, R̊+

�
r+2
√
R).

As a consequence, for R large enough in the sense that R ≥ R̊+
�
r +2

√
R (this holds as soon

as R ≥ R := 4 + 2(R̊+
�
r)),

R ≥ R̊+�
r+2
√
R⇔

√
R

2−2
√
R−(R̊+�

r) ≥ 0⇔
√
R ≥ 1+

√
1 + R̊+

�
r ⇐ R ≥ 2+2(1+R̊+

�
r)

the hard spheres and the particles that visit B(0, R̊+
�
r+
√
R) stay in a region where the self-

potentials ψ̇R and ψ̇R+1 vanish. That is, the k-th-particle dynamics computed at ω in (Sm,R)
does not feel ψ̇R if it collides with hard spheres or if it starts in B(0, R̊+

�
r+
√
R). Consequently,

the sphere dynamics computed at ω in both equations (Sm,R) and (Sm,R+1) coincide when
R ≥ R, and the k-th-particle dynamics computed at ω coincide as soon as ẋk ∈ B(0, R̊+

�
r+
√
R).

The strong uniqueness in Theorem 2.2 of [9] allows us to deduce the existence of paths X̊x
i (ω),

Ẋx
k (ω), L

x
ij(ω), and ℓxik(ω) such that

∀R ≥ R, ∀1 ≤ i, j ≤ n, ∀k such that ẋk ∈ B(0, R̊+
�
r +
√
R), ∀t ∈ [0, 1],

X̊x,R
i (ω, t) = X̊x

i (ω, t), Ẋ
x,R
k (ω, t) = Ẋx

k (ω, t), L
x,R
ij (ω, t) = Lx

ij(ω, t), ℓ
x,R
ik (ω, t) = ℓxik(ω, t).

By construction then, these paths satisfy the following SDE:

for i, j ∈ {1, . . . , n}, k ∈ N∗, t ∈ [0, 1],

X̊x
i (ω, t) = x̊i + W̊i(ω, t)−

1

2

∫ t

0
∇ψ̊
(
X̊x
i (ω, s)

)
ds

+

n∑
j=1

∫ t

0

(
X̊x
i (ω, s)− X̊x

j (ω, s)
)
dLx

ij(ω, s)

+

+∞∑
k=1

∫ t

0

(
X̊x
i (ω, s)− Ẋx

k (ω, s)
)
dℓxik(ω, s),

Ẋx
k (ω, t) = ẋk + σ̇ Ẇk(ω, t) + σ̇2

n∑
i=1

∫ t

0

(
Ẋx
k (ω, s)− X̊x

i (ω, s)
)
dℓxki(ω, s),

Lx
ij(ω, 0) = 0, Lx

ij ≡ Lx
ji, Lx

ij(ω, t) =

∫ t

0
1|X̊x

i (ω,s)−X̊x
j (ω,s)|=2̊r dL

x
ij(ω, s), Lx

ii ≡ 0,

ℓxik(ω, 0) = 0, ℓxik ≡ ℓxki, ℓxik(ω, t) =

∫ t

0
1
|X̊x
i (ω,s)−Ẋx

k (ω,s)|=
�
r
dℓxik(ω, s), ℓxii ≡ 0.

This concludes the proof.
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Step 4: The constructed solution of (S) is defined on a full subset of Ω.
We first introduce a probability measure µ on the set of admissible configurations D, as the

law of n hard spheres – each one submitted to the self-potential ψ̊ – in an admissible Poisson bath
of particles. In Section 2.2 we will eventually prove that µ is indeed the reversible probability
measure for the dynamics (S).

Let π(dẋ) denote the Poisson point process on Ṁ with intensity ż > 0, where ż is a fixed
parameter (we let it vary only in Section 3.3). We consider the probability measure µ onM with
support in D, defined by the following integral characterisation: for any positive measurable
function F on D,∫

D

F (x)µ(dx) :=
1

Z

∫
Rnd

∫
Ṁ

F (̊xẋ)1D (̊xẋ)π(dẋ) ⊗ni=1 λ(dx̊i). (2.8)

The normalisation constant

Z =

∫
M

1D (̊xẋ)π(dẋ) ⊗ni=1 λ(dx̊i) < +∞

is finite since the measure λ has finite mass.
Notice that, by considering ⊗ni=1λ(dx̊i), we have enforced an ordering on the hard spheres

x̊. As such, one would expect an additional factor of 1/n!, which is absorbed in the above
normalisation constant Z.

Proposition 2.5. For µ-a.e. x ∈ D,
P (Ωx) = 1.

Therefore, the limit process Xx constructed in Proposition 2.4 is well-defined for µ-almost every
initial configuration x.

Proof. We aim to prove that
∫
D

P
(
(Ωx)

c
)
dµ(x) = 0.

From the definition of Ωx given in (2.7), we can write its complement set (Ωx)
c as

⋃
R̊∈N∗

lim sup
R

{
∃i ≤ n : X̊x,R

i ∈ B
(
R̊+
√
R,

1√
R
, 1
)
∪ B

(
R̊+
√
R− 1,

1√
R− 1

, 1
)

or

∃k ≤ m(ẋ, R) : Ẋx,R
k ∈ B

(
R̊+

�
r +
√
R,

1√
R
, 1
)
∪ B

(
R̊+
√
R− 1,

1√
R− 1

, 1
)}
,

where B denotes the set of bad paths, complement of the set N of nice paths defined in (2.6):

B(α, δ, ε) :=

{
f : [0, 1]→ Rd continuous s.t. min

s∈[0,1]
|f(s)| ≤ α and w(f, δ) > ε

}
.

In other words, a path in B(α, δ, ε) visits the ball B(0, α) during the time interval [0, 1] and its
δ-modulus of continuity is larger than ε.

Since B(α, δ, ε) increases as α increases, and increases as δ increases, it suffices to prove that∫
D

P (Ω̃x) dµ(x) = 0, where

Ω̃x :=
⋃
R̊∈N∗

lim sup
R

{
∃i ≤ n : X̊x,R

i ∈ B(R̊+
√
R,

1√
R− 1

, 1)

or ∃k ≤ m(ẋ, R) : Ẋx,R
k ∈ B(R̊+

�
r +
√
R,

1√
R− 1

, 1)

}
⊃ (Ωx)

c.
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Thanks to the Borel–Cantelli lemma, it is then sufficient to prove that, for any R̊ ∈ N∗,∑
R∈N∗

∫
D

P
(
∃i ≤ n, X̊x,R

i ∈ B(R̊+
√
R,

1√
R− 1

, 1) or

∃k ≤ m(ẋ, R), Ẋx,R
k ∈ B(R̊+

�
r +
√
R,

1√
R− 1

, 1)
)
dµ(x) < +∞. (2.9)

The convergence of the above series will derive from a precise control of the probability of bad
paths under various reversible dynamics. This result is contained in Lemmas 2.6 and 2.7 below.

Lemma 2.6. Let ν̄m,R denote the probability measure on Dm obtained by normalising the
measure νm,R defined in (2.3).

The reversible solution Xm,R of the SDE (Sm,R) with initial distribution ν̄m,R satisfies the
following inequality: for 0 < α < α′, δ ∈ (0, 1) and ε > 0,

Pν̄m,R
(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ c1

δ

n+m

1− e−c0 δα2 e−c0 ε
2/δ,

where c0 > 0 and c1 > 0 are constants depending only on the dimension d and the parameter σ̇.

For the sake of readability, the proof of this lemma is stated at the end of the section.

Consider now a Poissonian randomisation of the number m of moving particles in the measure
νm,R. This leads to the definition of the following probability measure on D, mixture of νm,R

measures:

µR :=
1

ZR

+∞∑
m=0

żm

m!
νm,R, (2.10)

where the normalisation constant ZR is given by

ZR =

∫
Rdn

1D (̊x) exp

(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x)dx

)
⊗ni=1 λ(dx̊i).

We compute it below using the notation λ(̊xi) := e−ψ̊(̊xi)dx̊i :

ZR =
+∞∑
m=0

żm

m!
νm,R(Rnd × Rmd)

=

∫
Rnd

1D (̊x1, · · · , x̊n)
n∏
i=1

e−ψ̊(̊xi)dx̊1 · · · dx̊n

+
+∞∑
m=1

żm

m!

∫
Rdn×Rdm

1Dn,m (̊x1, · · · , x̊n, ẋ1, · · · , ẋm)
n∏
i=1

e−ψ̊(̊xi)
m∏
k=1

e−ψ̇
R(ẋk) dx̊1 · · · dx̊ndẋ1, · · · , dẋm

=

∫
Rdn

1D (̊x) dλ(̊x1) · · · dλ(̊xn)

+

+∞∑
m=1

żm

m!

∫
Rdn

∫
Rdm

1D (̊x)

m∏
k=1

(
1ẋi /∈B(̊x)e

−ψ̇R(ẋk)
)
dẋ1 · · · dẋm dλ(̊x1) · · · dλ(̊xn)

=

∫
Rdn

1D (̊x)

(
1 +

+∞∑
m=1

żm

m!

(∫
Rd\B(̊x)

e−ψ̇
R(ẋ1)dẋ1

)m)
dλ⊗n(̊x)

=

∫
Rdn

1D (̊x) exp

(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x)dx

)
dλ⊗n(̊x)
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Recall from (1.3) that the interior of the set B(̊x) ⊂ Rd is the forbidden volume for the centres
of particles around the configuration x̊.

By arguments similar to those used in the proof of Lemma 2.6, we can also control the
probability that the solution of (Sm,R) with initial distribution µR contains bad paths:

Lemma 2.7. The solution of the SDE (Sm,R) with initial distribution µR satisfies the following
inequality: for 0 < α < α′, δ ∈ (0, 1) and ε > 0,

PµR
(
∃i ≤ n : X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m : Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ c1

δ

(
n+ ż

∫
Rd

e−ψ̇
R(x)dx

) e−c0 ε
2/δ

1− e−c0 δα2 ,

where c0 > 0 and c1 > 0 are universal constants depending only on the dimension d and the
parameter σ̇.

A more precise version of the above inequality is :

PµRż

(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
:=

1

ZR

+∞∑
m=0

żm

m!
νm,R(Rnd×Rmd)Pνm,R

(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ 36d

δ

e−c0ε
2/δ

1− e−c0δmin(α,α′)2

(
n+ ż

∫
Rd

e−ψ̇
R(ẋ1)dẋ1

)
Proof. As written in the previous computation of ZR

νm,R(Rnd × Rmd) =
∫
Rdn

1D (̊x)

(∫
Rd\B(̊x)

e−ψ̇
R(ẋ1)dẋ1

)m
dλ⊗n(̊x)

≤ ν(R,m−1)(Rnd × R(m−1)d)

∫
Rd

e−ψ̇
R(ẋ1)dẋ1

Using Proposition 2.6 for each possible number m of particles we get

PµRż

(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α, δ, ε)

)
≤ 1

ZR

+∞∑
m=0

żm

m!
νm,R(Rnd × Rmd)

36d

δ

n+m

1− e−c0α2δ
e−c0ε

2/δ

≤ 36dn

δ

e−c0ε
2/δ

1− e−c0α2δ

+
ż

ZR

+∞∑
m=1

żm−1

(m− 1)!
ν(R,m−1)(Rnd × R(m−1)d)

∫
Rd

e−ψ̇
R(ẋ1)dẋ1

36d

δ

e−c0ε
2/δ

1− e−c0α2δ

≤ 36d

δ

e−c0ε
2/δ

1− e−c0α2δ

(
n+ ż

∫
Rd

e−ψ̇
R(ẋ1)dẋ1

)

From Lemma 2.7, together with Remark 2.3, it is now easy to obtain the convergence of the
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following series:∑
R

PµR
(
∃i ≤ n : X̊m,R

i ∈ B(R̊+
√
R,

1√
R− 1

, 1) or

∃k ≤ m : Ẋm,R
k ∈ B(R̊+

�
r +
√
R,

1√
R− 1

, 1)
)

≤
∑
R

c1
√
R− 1

n+ ż
∫
Rd e

−ψ̇R(x)dx

1− exp(−c0(R̊+
√
R)2/

√
R− 1)

e−c0
√
R−1 < +∞.

(2.11)

Or more precisely :∑
R

PµRż

(
∃i ≤ n, X̊m,R

i ∈ B(R̊+
√
R,

1√
R− 1

, 1) or ∃k ≤ m, Ẋm,R
k ∈ B(R̊+

�
r +
√
R,

1√
R− 1

, 1)

)

≤
∑
R

36d
√
R− 1

e−c0
√
R−1

1− exp(−c0(R̊+
√
R)2/

√
R− 1)

(
n+ ż

∫
Rd

e−ψ̇
R(ẋ1)dẋ1

)

Since ψ̇R = 0 on B(0, R) and
∑

R

∫
|x|>R e

−ψ̇R(x) dx < +∞, for R large enough(
n+ ż

∫
Rd e

−ψ̇R(ẋ1)dẋ1

)
is bounded by some constant times Rd. For some constant C1 the

above sum admits the upper bound

≤ C1

∑
R

Rd+1/2 e−c0
√
R−1

1− exp(−c0(R̊+
√
R)2/

√
R)

≤ C1

∑
R

Rd+1/2 e−c0
√
R−1

1− e−2c0R̊
< +∞

This is still not exactly the summability (2.9) we are aiming for, but we are close.
In order to conclude, we have to compare the two processes below, whose dynamics are given

by the same SDE (Sm,R), m ∈ N, but with different initial configuration distributions:

• The process Xm,R, with random m and initial configuration Xm,R(0) chosen according to the
probability measure µR, introduced in (2.10);

• The processXx,R, whose initial configuration x is chosen according to the probability measure
µ. In particular, the random number m = m(ẋ, R) corresponds to the number #ẋ|R of
particles of ẋ in B(0, R), see (2.5).

Note that the first process is reversible – as it is given by a mixture of reversible processes – while
the second one is not, since, e.g., its initial law only weighs configuration of particles concentrated
in B(0, R).

In order to estimate the difference between these two processes, we consider the total variation
distance between their laws, denoted by dTV (R). It is defined as usual as the supremum over all
measurable sets A of continuous paths with values in D :

dTV (R) := sup
A⊂C([0,1],D)

∣∣∣∣ ∫
D

P
(
X#ẋ,R ∈ A|X#ẋ,R(0) = x

)
µR(dx)

−
∫
D

P
(
Xm(ẋ,R),R ∈ A|Xm(ẋ,R),R(0) = x

)
µ(dx)

∣∣∣∣
= sup

A⊂C([0,1],D)

∣∣∣∣ ∫
D

FA(x) µ
R(dx)−

∫
D

FA(̊xẋ|R)µ(dx)

∣∣∣∣,
where, for anym ≥ 0, the function FA is defined onDm by FA(x) := P

(
Xm,R ∈ A|Xm,R(0) = x

)
.
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In the second integral, we can disintegrate the Poisson point measure π (which models the
law of the particles under µ) into the product of the Poisson point measure π|R inside B(0, R)
and the Poisson point measure π|Rc outside B(0, R). Denoting

ZR :=

∫
Ṁ

∫
Rdn

1D (̊xẏ) e
ż|B(0,R)\B(̊x)| ⊗ni=1 λ(dx̊i) dπ|Rc (ẏ),

we obtain that dTV (R) is the supremum over A of the following expression:∣∣∣∣ 1

ZR

∫
Rdn

1D (̊x)
(
FA(̊x)

+
+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ1 . . . ẋm)
m∏
k=1

(
1ẋk /∈B(̊x) e

−ψ̇R(ẋk)
)
⊗mk=1 dẋk

)
⊗ni=1 λ(dx̊i)

− 1

ZR

∫
Ṁ

∫
Rdn

1D (̊xẏ)
(
FA(̊x)

+

+∞∑
m=1

żm

m!

∫
B(0,R)m

FA(̊xẋ1 . . . ẋm)

m∏
k=1

1ẋk /∈B(̊x) ⊗
m
k=1 dẋk

)
⊗ni=1 λ(dx̊i)π|Rc (dẏ)

∣∣∣∣
≤
∫
Ṁ

∣∣∣∣ ∫
Rdn

FA(̊x)
(1D (̊x)
ZR

− 1D (̊xẏ)

ZR

)
+

+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ)
m∏
k=1

(
1ẋk /∈B(̊x) e

−ψ̇R(ẋk)
)

(1D (̊x)
ZR

− 1D (̊xẏ)

ZR
1ẋ⊂B(0,R)

)
⊗mk=1 dẋk ⊗ni=1 λ(dx̊i)

∣∣∣∣π|Rc (dẏ).
We then have that

dTV (R) ≤
∣∣∣∣ZRZR − 1

∣∣∣∣+ n

(
1 +
ZR

ZR

)
eż|B(0,R)|

ZR
e
ż
∫
B(0,R)c e

−ψ̇R(x) dx
∫
B(0,R−�

r )c
e−ψ̊(x) dx

+ ż
ZR

ZR

∫
B(0,R)c

e−ψ̇
R(x) dx,

where the last inequality follows from the fact that the function FA is bounded by one, and by
carefully reordering and upperbounding each term.

We now need the following fine estimate on the asymptotic behaviour for large R of the two
normalisation constants ZR and ZR:

1 ≤ ZR
ZR

≤ exp
(
ż

∫
B(0,R)c

e−ψ̇
R(x)dx

)
,

where the upper bound converges quickly to 1, since the exponent is summable in R, as stated
in (2.2). Therefore, there exists a positive constant c3 depending only on n, ψ̊, ż such that, for R
large enough,

dTV (R) ≤ c3

(∫
B(0,R−�

r )c
e−ψ̊(x) dx+

∫
B(0,R)c

e−ψ̇
R(x)dx

)
≤ c3

(∫
Rd |x|

2 e−ψ̊(x) dx

(R− �
r)2

+

∫
B(0,R)c

e−ψ̇
R(x)dx

)
.

(2.12)

Thanks to assumptions (2.1) and (2.2) on ψ̊ and ψ̇R, respectively, the right-hand side is summable.
The convergence of the series in (2.11) implies the summability (2.9) for every R̊, which in

turn implies that Ωx is µ-a.s. a set of full measure. This completes the proof of Proposition 2.5.
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Here is a more detailed version of the proof of Proposition 2.5.
Recall that ẋ|R := {ẋi s.t. |ẋi| < R} denotes the subset of particles in ẋ which belong to the

ball B(0, R). Similarly ẏ|Rc := {ẏi s.t. |ẏi| ≥ R} denotes the subset of particles in ẏ which do
not belong to the ball B(0, R).

Remark that for functions x̊ẋ 7−→ f (̊xẋ|R) which only depend on the large ball and the small
balls whose distance from the origin at most R∫

(Rd)n×(Rd)N
f (̊xẋ) dµ(̊xẋ)

=
1

ZR

∫
(Rd)N

∫
(Rd)n

1D (̊xẏ)

(
f (̊x) +

+∞∑
m=0

żm

m!

∫
B(0,R)m

m∏
k=1

1ẋk /∈B(̊x)f (̊xẋ1 . . . ẋm) dẋ1 . . . dẋm

)
dλ⊗n(̊x) dπ|Rc (ẏ)

where

ZR := ZB(0,R) =

∫
(Rd)N

∫
(Rd)n

1D (̊xẏ) e
ż|B(0,R)\B(̊x)| dλ⊗n(̊x) dπ|Rc (ẏ)

We now use the definition of µ given in (2.8), condition the Poisson bath of particles by a fixed
configuration ẏ outside the ball B(0, R) and mix over any Poissonian ẏ.

We want to compare two dynamics:

• The solution
(
X̊m,R
i (t), Ẋm,R

k (t), Lm,Rij (t), ℓm,Rik (t)
)
t∈R+,1≤i≤n,1≤k∈m

of the SDE sequence

(Sm,R)m∈N with random m and starting configuration X̊(0)Ẋ1(0) . . . Ẋm(0) chosen according
to probability measure µR

• and the solution
(
X̊m,R
i (t), Ẋm,R

k (t), Lm,Rij (t), ℓm,Rik (t)
)
t∈R+,1≤i≤n,1≤k∈m

of the SDE sequence

(Sm,R)m∈N starting from configuration X̊(0)Ẋ1(0) . . . Ẋm(0) chosen according to probability
measure µ with random m equal to the number of small particles in B(0, R) at initial time.

Note that the dynamics are the same once the starting configuration is fixed. But the first
process is reversible as a mixture of reversible processes. And in the second process all small
particles start from a point in B(0, R).

Let us compute the total variation distance between the distributions of these two processes.
It is defined as a supremum over all finite sets of paths Θ in C0([0; 1],D) :

dTV (R) := sup
Θ⊂C0([0;1],D)

∣∣∣∣∫
D

Px̊ẋ1...ẋm

(
(X̊m,R

i , Ẋm,R
k ) ∈ Θ

)
dµR(̊xẋ1 . . . ẋm)

−
∫
D

Px̊ẋ|R

(
(X̊

#ẋ|R ,R

i , Ẋ
#ẋ|R ,R

k ) ∈ Θ
)
dµ(̊xẋ)

∣∣∣∣
where Px̊ẋ1...ẋm

(
(X̊m,R

i , Ẋm,R
k ) ∈ ·

)
is the distribution of the above first process starting from

configuration x̊ẋ1 . . . ẋm and Px̊ẋ|R

(
(X̊

#ẋ|R ,R

i , Ẋ
#ẋ|R ,R

k ) ∈ ·
)

is the distribution of the above
second process starting from configuration x̊ surrounded by all small particles which start in
B(0, R).

Let FA(̊xẋ1 . . . ẋm) := Px̊ẋ1...ẋm

(
(X̊m,R

i , Ẋm,R
k ) ∈ Θ

)
. Note that

Px̊ẋ|R

(
(X̊

#ẋ|R ,R

i , Ẋ
#ẋ|R ,R

k ) ∈ Θ
)
= FA(̊xẋ|R)
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The total variation distance dTV (R) is the supremum over Θ measurable subset of C0([0; 1],D)
of

∣∣∣∣∫
D

FA(̊xẋ1 . . . ẋm) dµR(̊xẋ1 . . . ẋm)−
∫
D

FA(̊xẋ|R) dµ(̊xẋ)

∣∣∣∣
=

∣∣∣∣∣ 1

ZR

∫
Rdn

1D (̊x)

(
FA(̊x) +

+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ1 . . . ẋm)

m∏
k=1

(
1ẋk /∈B(̊x) e

−ψ̇R(ẋk)
)
dẋ1 · · · dẋm

)
dλ⊗n(̊x)

− 1

ZR

∫
(Rd)N

∫
Rdn

1D (̊xẏ)

(
FA(̊x) +

+∞∑
m=1

żm

m!

∫
B(0,R)m

m∏
k=1

1ẋk /∈B(̊x)FA(̊xẋ1 . . . ẋm)dẋ1 . . . dẋm

)
dλ⊗n(̊x) dπ|Rc (ẏ)

∣∣
=

∣∣∣∣∣
∫
(Rd)N

∫
Rdn

(
1D (̊x)

ZR

(
FA(̊x) +

+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ)

m∏
k=1

(
1ẋk /∈B(̊x) e

−ψ̇R(ẋk)
)
dẋ

)

−1D (̊xẏ)
ZR

(
FA(̊x) +

+∞∑
m=1

żm

m!

∫
B(0,R)m

m∏
k=1

1ẋk /∈B(̊x)FA(̊xẋ) dẋ

))
dλ⊗n(̊x) dπ|Rc (ẏ)

∣∣∣∣∣
Consequently, the total variation distance dTV (R) is smaller than

∫
(Rd)N

∣∣∣∣∫
Rdn

FA(̊x)

(
1D (̊x)

ZR
−
1D (̊xẏ|Rc )

ZR

)
+

+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ)

(
1D (̊x)

ZR

m∏
k=1

(
1ẋi /∈B(̊x) e

−ψ̇R(ẋk)
)

−1D (̊xẏ)
ZR

m∏
k=1

1ẋk∈B(0,R)\B(̊x)

)
dẋdλ⊗n(̊x)

∣∣∣∣∣ dπ|Rc (ẏ)
Recall that ψ̇R vanishes on B(0, R) hence the above may be rewritten as

∫
(Rd)N

∣∣∣∣∫
Rdn

FA(̊x)

(
1D (̊x)

ZR
− 1D (̊xẏ)

ZR

)
+

+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ)

m∏
k=1

(
1ẋi /∈B(̊x) e

−ψ̇R(ẋk)
)

(
1D (̊x)

ZR
− 1D (̊xẏ)

ZR

m∏
k=1

1ẋk∈B(0,R)dẋ

)
dλ⊗n(̊x)

∣∣∣∣∣ dπ|Rc (ẏ)
Since 0 ≤ FA ≤ 1 this is smaller than

∫
(Rd)N

∫
Rdn

∣∣∣∣1D (̊x)ZR
− 1D (̊xẏ)

ZR

∣∣∣∣
(
1 +

+∞∑
m=1

żm

m!

∫
Rdm

m∏
k=1

(
1ẋi /∈B(̊x) e

−ψ̇R(ẋk)
)
dẋ

)

+
1D (̊xẏ)

ZR

+∞∑
m=1

żm

m!

∫
Rdm

m∏
k=1

(
1ẋi /∈B(̊x) e

−ψ̇R(ẋk)
)(

1−
m∏
k=1

1ẋk∈B(0,R)

)
dẋ dλ⊗n(̊x) dπ|Rc (ẏ)
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Since
(
1−

∏m
k=1 1ẋk∈B(0,R)

)
≤
∑m

k=1 1ẋk /∈B(0,R) we obtain

dTV (R)

≤
∫
(Rd)N

∫
Rdn

∣∣∣∣1D (̊x)ZR
− 1D (̊xẏ)

ZR

∣∣∣∣ exp
(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x) dπ|Rc (ẏ)

+

∫
(Rd)N

∫
Rdn

1D (̊xẏ)

ZR

+∞∑
m=1

żm

m!
m

∫
Rdm

m∏
k=1

(
1ẋi /∈B(̊x) e

−ψ̇R(ẋk)
)
1ẋm /∈B(0,R) dẋ dλ

⊗n(̊x) dπ|Rc (ẏ)

≤
∫
(Rd)N

∫
Rdn

1D (̊x)

∣∣∣∣∣ 1

ZR
−
1
x̊∩B(ẏ,

�
r )=∅)

ZR

∣∣∣∣∣ exp
(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x) dπ|Rc (ẏ)

+ ż

(∫
B(0,R)c

e−ψ̇
R(x) dx

)∫
Rdn

∫
(Rd)N

1
x̊∩B(ẏ,

�
r )=∅)

dπ|Rc (ẏ)

1D (̊x)

ZR

+∞∑
m=1

żm−1

(m− 1)!

(∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)m−1
dλ⊗n(̊x)

Note that
∫
(Rd)N 1x̊∩B(ẏ,

�
r )=∅)

dπ|Rc (ẏ) ≤ 1 thus the second term is bounded by

ż

(∫
B(0,R)c

e−ψ̇
R(x) dx

)∫
Rdn

1D (̊x)

ZR
exp

(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x)

= ż

(∫
B(0,R)c

e−ψ̇
R(x) dx

)
ZR

ZR

We split the first term using the partition 1 = 1B(̊x)⊂B(0,R) + 1B(̊x)∩B(0,R)c ̸=∅, then use the
facts that 1

x̊∩B(ẏ,
�
r )=∅)

= 1 when B(̊x) ⊂ B(0, R) and 1B(̊x)∩B(0,R)c ̸=∅ ≤
∑n

i=1 1|̊xi|>R−
�
r
.

∫
(Rd)N

∫
Rdn

1D (̊x)

∣∣∣∣∣ 1

ZR
−
1
x̊∩B(ẏ,

�
r )=∅)

ZR

∣∣∣∣∣ exp
(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x) dπ|Rc (ẏ)

≤
∫
Rdn

1D (̊x) 1B(̊x)⊂B(0,R)

∣∣∣∣ 1

ZR
− 1

ZR

∣∣∣∣ exp
(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x)

+

∫
Rdn

1D (̊x)

n∑
i=1

1
|̊xi|>R−

�
r

(
1

ZR
+

1

ZR

)
exp

(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x)

≤
∣∣∣∣ 1

ZR
− 1

ZR

∣∣∣∣ ∫
Rdn

1D (̊x) exp

(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x) dx

)
dλ⊗n(̊x)

+

(
1

ZR
+

1

ZR

)∫
Rdn

1D (̊x) n 1
|̊x1|>R−

�
r
exp

(
ż

∫
Rd

e−ψ̇
R(x) dx

)
dλ⊗n(̊x)

≤
∣∣∣∣ 1

ZR
− 1

ZR

∣∣∣∣ZR + n

(
1

ZR
+

1

ZR

)
exp

(
ż

∫
Rd

e−ψ̇
R(x) dx

)∫
Rd
1
|x|>R−�

r
e−ψ̊(x) dx

≤
∣∣∣∣ZRZR − 1

∣∣∣∣+ n

(
1 +
ZR

ZR

)
eż|B(0,R)|

ZR
exp

(
ż

∫
B(0,R)c

e−ψ̇
R(x) dx

)∫
Rd
1
|x|>R−�

r
e−ψ̊(x) dx
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We finally get

dTV (R)

≤
∣∣∣∣ZRZR − 1

∣∣∣∣+ n

(
1 +
ZR

ZR

)
eż|B(0,R)|

ZR
e
ż
∫
B(0,R)c e

−ψ̇R(x) dx
∫
Rd
1
|x|>R−�

r
e−ψ̊(x) dx

+ ż

(∫
B(0,R)c

e−ψ̇
R(x) dx

)
ZR

ZR

To find a tight upper bound for these two terms, we prove that the normalisation factors of
our two probability measures are equivalent. First of all :

ZR =

∫
Rdn

1D (̊x) exp
(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x)dx︸ ︷︷ ︸

≥|B(0,R)\B(̊x)|

)
dλ⊗n(̊x) ≥ ZR

Using the fact that 1
x̊∩B(ẏ|Rc ,

�
r )=∅)

= 1 when B(̊x) ⊂ B(0, R) and that π|Rc is a probability

measure we get

ZR =

∫
(Rd)n

1D (̊x)

∫
(Rd)N

1
x̊∩B(ẏ,

�
r )=∅)

dπ|Rc (ẏ) e
ż|B(0,R)\B(̊x)| dλ⊗n(̊x)

≥
∫
(Rd)n

1D (̊x) 1B(̊x)⊂B(0,R) e
ż|B(0,R)\B(̊x)| dλ⊗n(̊x)

≥
∫
(Rd)n

1D (̊x) 1B(̊x)⊂B(0,R) e
ż
∫
Rd\B(̊x) e

−ψ̇R(x)dx
e
−ż

∫
B(0,R)c e

−ψ̇R(x)dx
dλ⊗n(̊x)

≥ e−ż
∫
B(0,R)c e

−ψ̇R(x)dx

(
ZR −

∫
(Rd)n

1D (̊x) 1B(̊x)̸⊂B(0,R) e
ż
∫
Rd\B(̊x) e

−ψ̇R(x)dx
dλ⊗n(̊x)

)

≥ ZR e
−ż

∫
B(0,R)c e

−ψ̇R(x)dx

So that 1 ≤ ZR
ZR
≤ eż

∫
B(0,R)c e

−ψ̇R(x)dx.

Moreover

ZR =

∫
Rdn

1D (̊x) exp
(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x)dx︸ ︷︷ ︸

≥|B(0,R)|−|B(̊x)|
≥|B(0,R)|−n|B(0,

�
r |

)
dλ⊗n(̊x) ≥ λ⊗n(D) eż|B(0,R)| e−żn|B(0,

�
r |

In the upper bound of dTV (R) this leads to

dTV (R) ≤
(
e
ż
∫
B(0,R)c e

−ψ̇R(x)dx − 1

)

+ e
ż
∫
B(0,R)c e

−ψ̇R(x) dx

n(1 + e
ż
∫
B(0,R)c e

−ψ̇R(x)dx
)

eżn|B(0,
�
r |

λ⊗n(D)

∫
Rd
1
|x|>R−�

r
e−ψ̊(x) dx

+ż

∫
B(0,R)c

e−ψ̇
R(x) dx

)
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Recall that
∑

R

∫
B(0,R)c e

−ψ̇R(x)dx < +∞. If R is large enough for ż
∫
B(0,R)c e

−ψ̇R(x) dx to be
smaller than 1/2 :

dTV (R)

≤ 2ż

∫
B(0,R)c

e−ψ̇
R(x)dx+

√
e(1 +

√
e)neżn|B(0,

�
r |

λ⊗n(D)

∫
Rd |x|

2 e−ψ̊(x) dx

(R− �
r)2

+ ż
√
e

∫
B(0,R)c

e−ψ̇
R(x) dx

This is summable over R.∑
R dTV (R) < +∞ and the convergence of the series in (2.11) implies for every R̊ the

convergence (2.9):∑
R

∫
D

P

(
∃i ≤ n, X̊

#ẋ|R ,R

i ∈ B(R̊+
√
R,

1√
R− 1

, 1)

or ∃k ≤ m, Ẋ
#ẋ|R ,R

k ∈ B(R̊+
�
r +
√
R,

1√
R− 1

, 1)

)
dµ(̊xẋ) < +∞

which in turn implies
∫
D

P (Ωx) dµ(x) = 1. This completes the proof of Proposition 2.5.

Pν̄m,R
(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ 36d

δ

n+m

1− ec0δα2 e
−c0ε2/δ

with c0 =
1

10d max(1,σ̇2)
.

We are then only left with proving Lemma 2.6.

Proof of Lemma 2.6. According to (Sm,R), for any i ∈ {1, . . . , n}, the process

W̊i(t) = X̊m,R
i (t)− X̊m,R

i (0) +
1

2

∫ t

0
∇ψ̊
(
X̊m,R
i (s)

)
ds

−
n∑
j=1

∫ t

0

(
X̊m,R
i − X̊m,R

j )(s)
)
dLij(s)−

m∑
k=1

∫ t

0
(X̊m,R

i − Ẋm,R
k )(s) dℓik(s)

(2.13)

is a Brownian motion. Since Xm,R is time-reversible, the process
(
X̊m,R
i (t)

)
t∈[0,1]

has the same

distribution as the backward process
(
X̊m,R
i (1− t)

)
t∈[0,1]

. Consequently the process W̊i←− obtained

by replacing X̊m,R
i (·) by X̊m,R

i (1− ·) in (2.13) is also a Brownian motion. Moreover, it satisfies

W̊i←−(t) = X̊m,R
i (T − t)− X̊m,R

i (T ) +
1

2

∫ t

0
∇ψ̊
(
X̊m,R
i (T − s)

)
ds

−
n∑
j=1

∫ t

0

(
X̊m,R
i − X̊m,R

j )(T − s)
)
dLij(T − s)−

m∑
k=1

∫ t

0
(X̊m,R

i − Ẋm,R
k )(T − s) dℓik(T − s)
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W̊i←−(t) = X̊m,R
i (1− t)− X̊m,R

i (1) +
1

2

∫ 1

1−t
∇ψ̊
(
X̊m,R
i (s)

)
ds

−
n∑
j=1

∫ 1

1−t

(
X̊m,R
i − X̊m,R

j )(s)
)
dLij(s)−

m∑
k=1

∫ 1

1−t
(X̊m,R

i − Ẋm,R
k )(s) dℓik(s).

Summing (2.13) with the above expression at time 1− t, we get

W̊i(t) + W̊←−i(1− t) = 2X̊m,R
i (t)− X̊m,R

i (0)− X̊m,R
i (1) +

1

2

∫ 1

0
∇ψ̊
(
X̊m,R
i (s)

)
ds

−
n∑
j=1

∫ 1

0

(
X̊m,R
i − X̊m,R

j )(s
)
)dLij(s)−

m∑
k=1

∫ 1

0
(X̊m,R

i − Ẋm,R
k )(s)dℓik(s),

where the sum of the three integral terms is equal to W̊←−i(1)− X̊
m,R
i (0) + X̊m,R

i (1).

Therefore, one can express X̊m,R(·)
i without local-time terms as follows:

X̊m,R
i (t) = X̊m,R

i (0) +
1

2

(
W̊i(t) + W̊i←−(1− t)− W̊i←−(1)

)
, t ∈ [0, 1]. (2.14)

Similarly,

Ẋm,R
k (t) = Ẋm,R

k (0) +
1

2

(
σ̇ Ẇk(t) + σ̇ Ẇk←−(1− t)− σ̇ Ẇk←−(1)

)
, t ∈ [0, 1].

σ̇ Ẇk(t) = Ẋm,R
k (t)− Ẋm,R

k (0) +
σ̇2

2

∫ t

0
∇ψ̇R(Ẋm,R

i (s)) ds− σ̇2
n∑
i=1

∫ t

0
(Ẋm,R

k (s)− X̊m,R
i (s))dℓki(s)

and

σ̇ Ẇ←−k(t) = Ẋm,R
k (T − t)− Ẋm,R

k (T ) +
σ̇2

2

∫ T

T−t
∇ψ̇R(Ẋm,R

i (s)) ds− σ̇2
n∑
i=1

∫ T

T−t
(Ẋm,R

k (s)− X̊m,R
i (s))dℓki(s)

both are scaled Brownian motions.

The n+m components of Xm,R are exchangeable, thus

Pν̄m,R
(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ n Pν̄m,R

(
X̊m,R

1 ∈ B(α, δ, ε)
)
+m Pν̄m,R

(
Ẋm,R

1 ∈ B(α′, δ, ε)
)
.

Summing over all possible initial positions, we get

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)

=
+∞∑
k=0

Pν̄m,R

(
kα ≤ |X̊m,R

1 (0)| < (k + 1)α and inf
[0;1]
|X̊m,R

1 | ≤ α and w(X̊m,R
1 , δ) > ε

)
.

A path which starts outside B(0, kα) and visits B(0, α) before time 1 necessarily has an oscillation
larger than (k − 1)αδ in some time interval of length δ; moreover, for k large enough, (k − 1)αδ
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is larger than ε. Therefore, the first two conditions in the above event imply the third one as
soon as k > 1 +

ϵ

αδ
. Hence,

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)
≤ Pν̄m,R

(
|X̊m,R

1 (0)| < α+ ϵ/δ and w(X̊m,R
1 , δ) > ε

)
+

∑
k>1+ε/αδ

Pν̄m,R
(
kα ≤ |X̊m,R

1 (0)| < (k + 1)α

and w(X̊m,R
1 , δ) > (k − 1)αδ

)
.

Thanks to the decomposition (2.14),

w(X̊m,R
1 , δ) > ε ⇒ w(W̊1, δ) > ε or w(W̊1←−, δ) > ε.

Therefore, we have

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)

≤ Pν̄m,R
(
|X̊m,R

1 (0)| < α+
ε

δ

)(
Pν̄m,R

(
w(W̊1, δ) > ε

)
+ Pν̄m,R

(
w(W̊1←−, δ) > ε

))
+

∑
k>1+ε/αδ

(
Pν̄m,R

(
w(W̊1, δ) > (k − 1)αδ

)
+ Pν̄m,R

(
w(W̊1←−, δ) > (k − 1)αδ

))
.

Note now the following standard estimate on the modulus of continuity of any d-dimensional
Brownian motion W : there exist two universal constants c1 > 0 and c2 > 0, depending only on
the dimension d, such that

P (w(W, δ) ≥ ε) ≤ c1
4δ

exp(−c2ε
2

δ
).

We then have

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)

≤ c1
2δ

Pν̄m,R
(
|X̊m,R

1 (0)| < α+
ε

δ

)
exp(−c2ε

2

δ
) +

c1
2δ

∑
k>1+ε/αδ

exp(−c2(k − 1)2α2δ)

≤ c1
2δ

(
Pν̄m,R

(
|X̊m,R

1 (0)| < α+
ε

δ

)
+

+∞∑
j=0

exp(−c2jα2δ)
)
exp

(
− c2ε

2

δ

)
≤ c1

δ

1

1− exp(−c2α2δ)
exp

(
− c2ε

2

δ

)
,

Lemma : If W is a d-dimensional Brownian motion on (Ω,F , P ) then for every ε > 0 and
every δ ∈]0, 1]

P (sup{|W (t)−W (s)| ; |t− s| < δ, 0 ≤ s, t ≤ 1} ≥ ε) ≤ 4
√
5
d

δ
exp(− ε2

10 d δ
)

Proof of the above lemma.
The squared Euclidean norm on Rd is a sum of squared coordinates, and all coordinates of W
are one-dimensional Brownian motions :

|W (t)−W (s)|2 =
d∑
i=1

|Wi(t)−Wi(s)|2 ≥ ε2 =⇒ ∃i ∈ {1, . . . , d} s.t. |Wi(t)−Wi(s)|2 ≥
ε2

d
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P

(
sup

0≤s,t≤1
|W (t)−W (s)| ≥ ε

)
≤ d P

(
sup

0≤s,t≤1
|W1(t)−W1(s)| ≥

ε√
d

)
Doob’s inequality for the submartingale exp(2W1(·)2/5) and Gaussian property
E(exp(aW1(1)

2)) = 1/
√
1− 2a lead to

P (∃s ≤ 1 , |W1(s)| ≥ β) = P

(
sup

0≤s≤1
exp(

2W1(s)
2

5
) ≥ exp(

2β2

5
)

)
≤ exp(−2β2

5
)E

(
exp(

2W1(1)
2

5
)

)
=
√
5 exp(−2β2

5
)

which implies

P

(
sup

0≤s,t≤1
|W1(t)−W1(s)| ≥

ε√
d

)

= P

(
∃s ∈ [0; 1] ∃t ∈ [0; 1] s.t. |W1(t)−W1(s)| ≥

ε√
d

)
≤ P

(
∃s ∈ [0; 1] ∃t ∈ [0; 1] s.t. |W1(s)| ≥

ε

2
√
d

or |W1(t)| ≥
ε

2
√
d

)
≤ P

(
∃s ∈ [0; 1] s.t. |W1(s)| ≥

ε

2
√
d

)
+ P

(
∃t ∈ [0; 1] s.t. |W1(t)| ≥

ε

2
√
d

)
≤ 2
√
5 exp(− ε2

10 d
)

hence

P

(
sup

0≤s,t≤1
|W (t)−W (s)| ≥ ε

)
≤ 2d

√
5 exp(− ε2

10 d
)

Since
(
W (δt)/

√
δ
)
t
and (W (t))t have the same distribution, change of variable s = δu and t = δv

gives

P

(
sup

0≤s,t≤δ
|W (t)−W (s)| ≥ ε

)
= P

(
sup

0≤u,v≤1

|W (δu)−W (δv)|√
δ

≥ ε√
δ

)
≤ 2d

√
5 exp(− ε2

10 d δ
)

Splitting [0; 1] in 2/δ time intervals with length δ/2 and using the translation invariance of the
distribution of W (s+ u)−W (s), we obtain

P

 sup
|t−s|<δ
0≤s,t≤1

|W (t)−W (s)| ≥ ε


= P

(
∃k ∈ {0, . . . , 2/δ} ∃s, t ∈

[
k
δ

2
; (k + 2)

δ

2

]
s.t. |W (t)−W (s)| ≥ ε

)
≤ 2

δ
P

(
sup

0≤s,t≤δ
|W (t)−W (s)| ≥ ε

)
≤ 4
√
5
d

δ
exp(− ε2

10 d δ
)

This completes the proof.
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By similar arguments, we obtain the following upper bound for the particles:

Pν̄m,R
(
Ẋm,R

1 ∈ B(α′, δ, ε)
)
≤ c1

δ

1

1− exp(−c2(α′)2δ/σ̇2)
exp(−c2ε

2

σ̇2δ
).

Pν̄m,R
(
Ẋm,R

1 ∈ B(α′, δ, ε)
)

=
+∞∑
k=0

Pν̄m,R

(
kα′ ≤ |Ẋm,R

1 (0)| < (k + 1)α′ and inf
[0;1]
|Ẋm,R

1 | ≤ α′

and sup{|Ẋm,R
1 (t)− Ẋm,R

1 (s)| ; |t− s| < δ} > ε
)

≤ Pν̄m,R
(
|Ẋm,R

1 (0)| < (1 + ε/α′δ)α′ and sup{|Ẋm,R
1 (t)− Ẋm,R

1 (s)| ; |t− s| < δ} > ε
)

+
∑

k>1+ε/α′δ

Pν̄m,R
(
kα′ ≤ |Ẋm,R

1 (0)| < (k + 1)α′ and

sup{|Ẋm,R
1 (t)− Ẋm,R

1 (s)| ; |t− s| < δ} > (k − 1)α′δ
)

We use the decomposition again : Ẋm,R
1 = Ẋm,R

1 (0) +
σ̇ Ẇ1(·)+σ̇ Ẇ←−1(1−·)−σ̇ Ẇ←−1(1)

2 .

Pν̄m,R
(
Ẋm,R

1 ∈ B(α′, δ, ε)
)

≤ Pν̄m,R
(
|Ẋm,R

1 (0)| < α′ +
ε

δ

)(
Pν̄m,R

(
sup
|t−s|<δ

|Ẇ1(t)− Ẇ1(s)| >
ε

σ̇

)

+Pν̄m,R

(
sup
|t−s|<δ

|Ẇ←−1(t)− Ẇ←−1(s)| >
ε

σ̇

))
+

∑
k>1+ε/α′δ

Pν̄m,R
(
kα′ ≤ |Ẋm,R

1 (0)| < (k + 1)α′
)

(
Pν̄m,R

(
sup
|t−s|<δ

|Ẇ1(t)− Ẇ1(s)| >
(k − 1)α′δ

σ̇

)

+Pν̄m,R

(
sup
|t−s|<δ

|Ẇ←−1(t)− Ẇ←−1(s)| >
(k − 1)α′δ

σ̇

))

≤ 18d

δ
Pν̄m,R

(
|Ẋm,R

1 (0)| < α′ +
ε

δ

)
exp(− ε2

10 d δσ̇2
) +

18d

δ

∑
k>1+ε/α′δ

exp(−(k − 1)2α′2δ

10 dσ̇2
)

≤ 18d

δ
exp(− ε2

10 d δσ̇2
)

Pν̄m,R (|Ẋm,R
1 (0)| < α′ +

ε

δ

)
+

+∞∑
j=0

exp(− jα′2δ

10 dσ̇2
)
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Therefore

Pν̄m,R
(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ n 18d

δ
exp(− ε2

10 d δ
)

Pν̄m,R (|X̊m,R
1 (0)| < α+

ε

δ

)
+

+∞∑
j=0

exp(−jα
2δ

10 d
)


+m

18d

δ
exp(− ε2

10 d δσ̇2
)

Pν̄m,R (|Ẋm,R
1 (0)| < α′ +

ε

δ

)
+

+∞∑
j=0

exp(− jα′2δ

10 dσ̇2
)


≤ 18d

δ
exp(−c0

ε2

δ
)

(
n+m+

n+m

1− exp(−c0min(α2, α′2)δ
)

)
≤ 18d

δ
exp(−c0

ε2

δ
)

2(n+m)

1− exp(−c0δmin(α2, α′2))

where c0 :=
1

10dmax(1,σ̇) .

Choosing c0 :=
c2

max(1, σ̇2)
yields the claimed estimate.

2.2 A (two-type) reversible measure

The identification of reversible measures associated to the dynamics (S) is mathematically and
physically relevant. We address it in this section.

Proposition 2.8. Consider the solution of the two-type infinite-dimensional equation (S), whose
initial condition X(0) is random and distributed according to the probability measure µ defined
on M by (2.8). This solution is time-reversible.

Proof. Recall that, thanks to Propositions 2.4 and 2.5, for any fixed admissible initial condition
x ∈ D, we can construct a path Xx solving (S) on the full set Ωx.

We aim to prove that the process XX0 is time-reversible as soon as X0 is a µ-distributed
point process independent of the Brownian motions (W̊i)i’s and (Ẇk)k’s.

The process XX0 is time-reversible on [0, 1] if, for any time T in [0, 1], the backward process(
XX0(T − t)

)
0≤t≤T has the same distribution as the forward process

(
XX0(t)

)
0≤t≤T . Equiva-

lently, one has to prove that, for any times 0 ≤ t1 < · · · < tj ≤ T, j ∈ N, and any bounded
continuous local functions F1, . . . , Fj on M,

∫
D

E

( j∏
i=1

Fi
(
Xx(T − ti)

)
−

j∏
i=1

Fi
(
Xx(ti)

))
µ(dx) = 0.

Since Xx was obtained in Proposition 2.4 as limit of (Xx,R)R, it is sufficient to prove that

lim
R→+∞

∫
D

E

( j∏
i=1

Fi
(
Xx,R(T − ti)

)
−

j∏
i=1

Fi
(
Xx,R(ti)

))
µ(dx) = 0.

Analogously to the proof of the existence of the two-type process, we split the computation of the
integral term into two terms, using the measure µR, see (2.10), mixture of the measures νm,R,
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themselves reversible under the finite-dimensional dynamics (Sm,R). Therefore,

∫
D

E

( j∏
i=1

Fi(X
x,R(T − ti))−

j∏
i=1

Fi(X
x,R(ti))

)
µ(dx)

≤
∫
D

E

( j∏
i=1

Fi(X
m(ẋ,R),R(T − ti))−

j∏
i=1

Fi(X
m(ẋ,R),R(ti))

)
µR(dx)︸ ︷︷ ︸

vanishes due to reversibility

+

j∏
i=1

∥Fj∥∞ dTV (R).

We know from (2.12) that the distance in total variation dTV (R) is summable in R, thus a
fortiori it tends to zero. This completes the proof of the time-reversibility of the solution of (S)
when the initial condition is µ-distributed.

3 Occurrence of a new depletion interaction between hard spheres

We are now interested in the projection of the two-type model considered till now onto the
system of just the n hard spheres. Our attention will first focus on the projection µ̊ of the
reversible measure µ studied in Section 2.2. A new interaction between the hard spheres induced
by the small ones will be observed as a depletion interaction. Its specific properties are pointed
out, in particular the fact that it is highly local, see Figure 4 and Figure 5. We then identify
an n-dimensional random gradient dynamics whose reversible measure is given by µ̊. Finally,
we prove that, asymptotically as the density ż of the (hidden) particles tends to infinity, the
measure µ̊ concentrates around remarkable geometrical configurations: they form sphere clusters
that maximise their contact number, which is part of an important – and difficult – topic in
discrete geometry.

3.1 The projection of the two-type reversible measure: the occurrence of a
depletion interaction

We study here the projection of the reversible measure µ onto the n hard spheres.

We first mention that in the case n = +∞, S. Jansen and D. Tsagkarogiannis computed
in [14, 15] the projection of the partition function of a two-type grand canonical Gibbs process
on the system of hard spheres. They prove the emergence of an additional induced interaction
between the spheres, identified as a depletion interaction. This kind of interaction was already
known and studied in the physical literature, see, e.g., [20] and [18]. We adapt their computations
to our setting, where the number of hard spheres is fixed to a finite n.

Recall that we defined in Section 1.2 a slightly enlarged version of the hard spheres, by placing
around them a spherical shell with size ṙ, called depletion shell. The new feature is that these
enlarged spheres with radius �

r = r̊+ ṙ may overlap pairwise, and this will be at the origin of the
depletion interaction.

Proposition 3.1. Consider µ, the reversible probability measure on M of the two-type system
defined by (2.8). Its projection onto the n hard sphere system is a probability measure µ̊ż on M̊
defined as

µ̊ż(dx̊) =
1

Zż
exp

(
− ż E (̊x)

)
1D (̊x) ⊗ni=1 λ(dx̊i), (3.1)

where E (̊x), the energy of the configuration x̊ ∈M, is given by

E (̊x) := Vol (B(̊x)) = Vol

(
n⋃
i=1

B(̊xi,
�
r)

)
.
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Proof. Integrating the measure µ over bounded test functions F supported on M̊ yields∫
M̊

F (̊x) µ̊ż(dx̊) :=

∫
M

F (̊x)µ(dx) =
1

Zż

∫
Rdn

F (̊x)

∫
Ṁ

1D (̊xẋ)π(dẋ) ⊗ni=1 λ(dx̊i)

=
1

Zż

∫
Rdn

F (̊x)
(∫
Ṁ

1D (̊xẋ|R(̊x)
)π|R(̊x)

(dẋ) ⊗ π|R(̊x)c
(dẋ)

)
1D (̊x) ⊗ni=1 λ(dx̊i),

where R(̊x) is a radius large enough for B
(
0, R(̊x)

)
to contain B(̊x). Since the particles outside

of B
(
0, R(̊x)

)
are independent of the ones inside, we get∫

M̊

F (̊x) µ̊ż(dx̊) =
1

Zż

∫
Rdn

F (̊x)

∫
Ṁ

1B(̊x)c(ẋ)π|R(̊x)
(dẋ) 1D (̊x) ⊗ni=1 λ(dx̊i)

=
1

Zż

∫
Rdn

F (̊x) exp
(
− ż Vol (B(̊x))

)
1D (̊x) ⊗ni=1 λ(dx̊i),

which is equivalent to the claim.

Remark 3.2. By the inclusion-exclusion rule,

E (̊x) =

n∑
k=1

Vol
(
B(̊xk,

�
r)
)
+

n∑
k=2

∑
1≤i1<···<ik≤n

φk (̊xi1 , . . . , x̊ik), (3.2)

where the function φk, k ≥ 2, is a symmetric translation-invariant function on (Rd)k given by

φk(x1, . . . , xk) := (−1)k−1 Vol
(
B(x1,

�
r) ∩ · · · ∩B(xk,

�
r)
)
.

The function φk is called the k-body depletion interaction. It is highly dependent on the pro-
portionality factor ρ between the particle radius and the hard sphere radius.

Putting everything together yields

µ̊ż(dx̊) = exp

(
− ż

(
nvd

�
rd +

n∑
k=2

∑
1≤i1<···<ik≤n

φk (̊xi1 , . . . , x̊ik)
))

1D (̊x) ⊗ni=1 λ(dx̊i),

where vd denotes the volume in Rd of the unit sphere.

In the following lemma, we give thresholds on ρ for three-body or k-body interactions to
occur. The computation of ρ2 is classical, see for example [11, 18]; see also [26] for a geometric
computation in the case of differently-shaped bodies.

Lemma 3.3. The multi-body depletion interaction reduces to a pair interaction as soon as the
size proportionality factor ρ between the particles and the hard spheres is bounded from above by
ρ2 :=

2
3

√
3−1 ≃ 0.1547. Moreover, 4-body depletion interactions can appear, in dimension d = 2,

only if ρ > ρ3 :=
√
2− 1 ≃ 0.4142, in dimension d ≥ 3, only if ρ > ρ3 :=

√
3/2− 1 ≃ 0.2247.

Proof. We shortly recall why the k-body interactions φk, k ≥ 3, vanish if and only if ρ ≤ ρ2.
Indeed, in any dimension d ≥ 2, the critical value of ρ for multiple depletion shells to overlap can
be computed by considering 3 spheres whose centres lie on the vertices of an equilateral triangle
of side-length 2 r̊, see Figure 2 (a). There is overlap as soon as the centre of the triangle is at
distance �

r = r̊(1 + ρ) from the vertices, that is if and only if ρ > ρ2 :=
2
3

√
3− 1 ≃ 0.1547.

The value for ρ3 depends on the dimension d. In dimension d = 2, the lowest value of ρ for
more than three depletion shells to overlap is obtained by considering four spheres whose centres
lie on the vertices of a square of side length 2̊r, see Figure 2 (b-c). So, there is a 4-way overlap
if and only if

2
√
2 r̊ < 2

�
r ⇐⇒ ρ > ρ3 :=

√
2− 1 ≃ 0.4142 .
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(a) (b) (c)

Figure 2: Examples of hard discs with depletion shell; the shaded areas represent the overlap between
the depletion shells. (a) For ρ smaller but close to the critical case ρ2, where only pair interactions occur;
(b) For ρ2 < ρ ≤ ρ3, there cannot be four-body interactions; (c) For ρ > ρ3, four-body interactions occur.

In dimension d ≥ 3, the smallest value of ρ is obtained by considering four spheres whose centres
lie on the vertices of a regular tetrahedron of side-length 2̊r. So, there is a 4-way overlap if and
only if the distance between any vertex and the center of mass of the tetrahedron is smaller than
�
r , that is √

3/2 r̊ <
�
r ⇐⇒ ρ > ρ3 :=

√
3/2− 1 ≃ 0.2247 .

This concludes the proof.

Let us compute the pair depletion interaction φ2 in any dimension.

Lemma 3.4. The pair depletion interaction is attractive, radial and acts only at very close
range. More precisely, its expression in dimension d is given by the following integral: for any
xi, xj ∈ Rd,

φ2(xi, xj) = −2 vd−1
�
rd
∫ arccos(u)

0
(sin θ)d dθ 1[ 1

1+ρ
,1](u), where u :=

|xi − xj |

2
�
r

.

In particular, φ2(xi, xj) ̸= 0 only if |xi − xj | is between 2̊r and 2
�
r .

Proof. Note first that the function φ2(xi, xj) = −Vol
(
B(xi,

�
r) ∩B(xj ,

�
r)
)

is non-positive and
therefore the pair depletion interaction is attractive.
Moreover, it only depends on the distance between both points xi and xj in Rd. Therefore, to
simplify the notations we define the (rescaled) function Vovlap as follows:

Vovlap(u) := −φ2(xi, xj) with u =
|xi − xj |

2
�
r

∈
[ r̊

�
r
,+∞

)
. (3.3)

The functionVovlap is clearly decreasing from its maximal valueV∗ovlap, attained at u = r̊
�
r
= 1

1+ρ ,
to its minimal value 0, attained at u = 1. It vanishes on [1,+∞), underlining the strong locality
of this pair interaction. We now compute it.

By shift invariance and symmetry, denoting by (e1, . . . , ed) an orthonormal basis of Rd, we
find

Vovlap(u) = Vol
(
B(0,

�
r) ∩B(2

�
ru e1,

�
r)
)

= 2Vol
({
x ∈ Rd, |x| ≤ �

r and x · e1 ≥
�
ru
})

= 2Vol

({
x ∈ Rd,

d∑
i=2

(x · ei)2 ≤
�
r 2 − (x · e1)2 and x · e1 ≥

�
ru

})
.
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Introducing vd−1, the volume of the unit sphere in Rd−1, one gets, for 1
1+ρ ≤ u ≤ 1,

Vovlap(u) = 2

∫ �
r

�
ru
vd−1

(√
�
r 2 − t2

)d−1
dt = 2vd−1 (

�
r 2)

d−1
2

∫ 1

u

(√
1− s2

)d−1 �
r ds

= 2vd−1
�
rd
∫ arccos(u)

0
(sin θ)d dθ.

Vovlap(u) = Vol
(
B(0,

�
r) ∩B(̊xi,

�
r)
)

where u :=
|̊xi|

2
�
r

= Vol
(
B(0,

�
r) ∩B(2

�
ru e1,

�
r)
)

where (e1, . . . , ed) is an orthonormal basis on Rd

This intersection is invariant under reflection through the plane which is orthogonal to e1 at
point �

ru e1 :

Vovlap(u) = 2Vol
({

x ∈ B(0,
�
r) ; x1 ≥

�
ru
})

= 2Vol

({
x ∈ Rd ; x1 ≥

�
ru and

d∑
i=2

x2i ≤
�
r 2 − x21

})

= 2

∫ �
r

�
ru

∫
Rd−1

1∑d
i=2 x

2
i≤

�
r2−x21

dx2 . . . dxd dx1

If vd−1 denotes the volume in Rd−1 of its unit sphere, then for 1
1+ρ < u < 1, one has x1 =

�
rs, dx1 =

�
rds

Vovlap(u) = 2

∫ �
r

�
ru
vd−1

(√
�
r 2 − x21

)d−1
dx1 = 2vd−1 (

�
r 2)

d−1
2

∫ 1

u

(√
1− s2

)d−1 �
r ds

= 2vd−1
�
rd
∫ arccos(u)

0
(sin θ)d dθ

Example 3.5 (The pair depletion interaction between discs in R2).

Applying Lemma 3.4, one can compute explicitly the integral in the case d = 2 to obtain, for
u =

|xi−xj |

2
�
r
∈ [ 1

1+ρ , 1],

φ2(xi, xj) = −2 v1
�
r 2
∫ arccos(u)

0
(sin θ)2 dθ = −2�

r 2
(
arccos(u)− u

√
1− u2

)
.

It can also be computed directly via the following simple planar geometry argument (cf. Figure 3).
In the plane, consider a disc centred at a point O ∈ R2, with radius �

r , and suppose it
intersects another disc of the same radius and whose centre is at distance 2

�
r u from O.

Denote by Asec(u), the area of the circular sector in OBC. Consider then the area Atri(u)
of the rectangular triangle OBC. One has

Asec(u) =
1

2
arccos(u)

�
r 2, Atri(u) =

1

2
OA AB =

�
r2

2
u
√
1− u2.
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Figure 3: Intersection of two depletion discs.

V
∗
ovlap

Vovlap(u)

1
1+ρ

1

u

V
′
ovlap(u) 1

1+ρ 1 u

Figure 4: Behaviour of u 7→ Vovlap(u) (left) and u 7→ V ′
ovlap(u) (right) for discs in the plane.

The area of the overlap is then given by

Vovlap(u) = 4
(
Asec(u)−Atri(u)

)
= 2

�
r 2
(
arccos(u)− u

√
1− u2

)
,

see Figure 4, left. The maximal overlap area is

V∗ovlap = Vovlap

( 1

1 + ρ

)
= 2

�
r 2
(
arccos

( 1

1 + ρ

)
− 1

(1 + ρ)2

√
ρ(2 + ρ)

)
. (3.4)

Moreover, the derivative on ( 1
1+ρ , 1) of the function Vovlap is given by

V ′ovlap(u) = −4
�
r 2
√

1− u2

which vanishes in 1 (see Figure 4, right). Therefore, the function Vovlap is of class C1 over the
full interval [ 1

1+ρ ,+∞). Nevertheless, its second derivative explodes at the point u = 1, since

V ′′ovlap(u) = 4
�
r 2

u√
1− u2

,
1

1 + ρ
≤ u < 1.

Remark 3.6. If the size of the particles is large enough (ρ > ρ2), then a three-body depletion
interaction can appear. Its explicit computation is done in [16, Equation 2.2]:

φ3(x1, x2, x3) =
1

2

( ∑
{i,j}⊂{1,2,3}

Vovlap

( |xi − xj |
2

�
r

)
− π�

r 2

+
1

2

√
4|x1 − x2|2|x1 − x3|2 −

(
|x1 − x2|2 + |x1 − x3|2 − |x2 − x3|2

)2)
.

Example 3.7 (The pair depletion interaction between balls in R3).
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Applying Lemma 3.4 in the case d = 3, one can explicitly compute the integral and obtain,
for u ∈ [ 1

1+ρ , 1]:

Vovlap(u) = 2 v2
�
r 3
∫ arccos(u)

0
(sin θ)3 dθ = 2π

�
r 3
∫ 1

u
(1− s2) ds = 4π

3

�
r 3(1− u)2(1 + u

2
),

see also, e.g., [25]. Its maximal value is given by

V∗ovlap = Vovlap

( 1

1 + ρ

)
= 2π r̊3 ρ2

(
1 +

2

3
ρ
)
.

Its first derivative satisfies

V ′ovlap(u) = −2π
�
r 3
(
1− u2

)
,

1

1 + ρ
< u < 1.

This expression vanishes in 1 which implies – as in dimension 2 – the C1-regularity of the
function Vovlap over the full intervall [ 1

1+ρ ,+∞), see Figure 5, left. Its second derivative on

( 1
1+ρ , 1) satisfies V ′′ovlap(u) = 4π

�
r 3u which does not vanish at u = 1 but remains bounded,

contrary to the behaviour in dimension 2, see Figure 5, right.

V
∗
ovlap

Vovlap(u)

1
1+ρ

1

u

V
′
ovlap(u) 1

1+ρ 1 u

Figure 5: Behaviour of u 7→ Vovlap(u) (left) and u 7→ V ′
ovlap(u) (right) for balls in R3.

Notice that, if the size of the particles is large enough (ρ > ρ2), then a three-body depletion
interaction can appear. K. W. Kratky computes it implicitly in [17, Equation 1.2b].

3.2 An associated gradient dynamics

From now on, we suppose ρ ≤ ρ2, so that the energy of a configuration of hard spheres defined
by (3.2) is only generated by pairwise interactions. Due to Lemma 3.4 and the definition of the
overlap function (3.3), the energy function becomes

E (̊x) = nvd
�
rd −

∑
1≤i<j≤n

Vovlap

( |̊xi − x̊j |
2

�
r

)
. (3.5)

The derivative of

Vovlap(u) = 2vd−1
�
rd
∫ arccos(u)

0
(sin θ)d dθ

is equal to

V ′ovlap(u) = 2vd−1
�
rd

−1√
1− u2

(sin(arccos(u)))d = −2vd−1
�
rd
(
1− u2

)(d−1)/2
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Therefore, using the explicit expression of Vovlap and V ′ovlap, the gradient field of the energy
satisfies, for i ∈ {1, · · · , d},

∇iE (̊x) = −
1

2
�
r

n∑
j=1

V ′ovlap

( |̊xi − x̊j |
2

�
r

) x̊i − x̊j
|̊xi − x̊j |

= vd−1
�
rd−1

n∑
j=1

(
1− |̊xi − x̊j |

2

4
�
r 2

)d−1
2

+

x̊i − x̊j
|̊xi − x̊j |

, (3.6)

where, as usual, u+ := max(0, u) denotes the positive part of any real number u.
Let us now define the diffusive dynamics of the hard spheres (X̊i)i=1,...,n submitted to (ż

times) this gradient field. It solves the following SDE:

for i, j ∈ {1, . . . , n}, t ∈ [0, 1],

dX̊i(t) = dW̊i(t)−
1

2
∇ψ̊
(
X̊i(t)

)
dt

− ż

2
vd−1

�
rd−1

n∑
j=1

(
1− |X̊i − X̊j |2

4
�
r 2

)d−1
2

+

X̊i − X̊j

|X̊i − X̊j |
dt

+

n∑
j=1

(
X̊i(t)− X̊j(t)

)
dLij(t) ,

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0
1|X̊i(s)−X̊j(s)|=2 r̊ dLij(s), Lii ≡ 0,

(Sdep
n )

where W̊1, ..., W̊n are n independent Rd-valued Brownian motions and Lij denotes the collision
local time between the sphere i and the sphere j. The local times Lij describe the effects of the
elastic collision between the hard spheres i and j (subject to normal reflection).

Theorem 3.8. The SDE (Sdep
n ) admits a unique solution in the set of admissible configurations

D. Moreover the measure µ̊ż defined by (3.1) is reversible under this dynamics.

Proof. The stochastic differential system (Sdep
n ) describes the dynamics of an nd-dimensional

gradient diffusion with reflection at the boundary of the set of admissible hard spheres D ∩M̊ =⋂
1≤i<j≤n

{
x̊ ∈ M̊ : Γij (̊x) ≥ 0

}
. This domain is induced by the pairwise constraint functions

Γij (̊x) :=
|̊xi−x̊j |2

4̊r2
− 1 introduced in (2.4).

We first verify the smoothness of each constraint function and their global compatibility:
this was already done in steps (i) and (ii) of the proof of Proposition 2.2 for a larger number of
constraints.

Existence and uniqueness of a strong solution to (Sdep
n ) are then ensured by [9, Theorem 2.2]

as soon as the gradient field of the energy function is Lipschitz continuous and bounded on the
domain D ∩ M̊. Considering the expression (3.6), this is the case in any dimension d > 2.

In dimension d = 2, however, the gradient

∇iE (̊x) = 2
�
r

n∑
j=1

√(
1− |̊xi − x̊j |

2

4
�
r 2

)
+

x̊i − x̊j
|̊xi − x̊j |

is Lipschitz continuous on D ∩ M̊, except around the configurations containing a pair of hard
spheres whose centres lie at the critical distance 2

�
r = 2 r̊(1+ ρ). This pathology corresponds to

the explosion of the function V ′′ovlap at u = 1 observed in Example 3.5. Nevertheless, the SDE
(Sdep

n ) can be solved straightforwardly as follows.
The solution is constructed progressively on intervals defined through a sequence of stopping

times indicating, either (i) the moment in which a pair i, j of hard spheres is close enough, say

34



Γij (̊x) ∈ [0, ρ], or (ii) the moment in which two spheres are close to the critical distance, say
Γij (̊x) ∈ [2ρ, 2ρ(1+ρ/2)]. In the first kind of time interval, the energy function is smooth and we
can use the existence result for d > 2. In the second kind of time interval, the energy function is
not smooth anymore, but the hard spheres cannot collide, meaning that (Sdep

n ) does not contain
collision local times. Therefore, we can apply strong existence results for Brownian diffusions
with bounded Borel drift as, e.g., [24, Theorem 1].

Applying [9, Theorem 2.5] (see also [21]), we get that e−żE(̊x) 1D (̊x) dx̊ is a time-reversible
measure for the dynamics (Sm,R). This concludes the proof of the theorem.

The derivative ofVovlap is bounded and continuous on
[

1
1+ρ ; +∞

[
because for 1

1+ρ < u < 1 :

V ′ovlap(u) = 2vd−1
�
rd arccos′(u)

(
sin
(
arccos(u)

))d
= −2vd−1

�
rd

1√
1− u2

(√
1− u2

)d
= −2vd−1

�
rd
(
1− u2

) d−1
2

The second derivative is

V ′′ovlap(u) = 2(d− 1)vd−1
�
rdu

(
1− u2

) d−3
2

= −(d− 1)
u V ′ovlap(u)

1− u2

Both derivatives are bounded for d ≥ 3. The second derivative is unbounded at u = 1 for d = 2
as stated above.

In the sequel we also need the derivatives of the Rdn −→ R function

∂

∂x̊i
|̊xi − x̊j | =

x̊i − x̊j
|̊xi − x̊j |

(d-dimensional column vector)

∂

∂x̊i

(
x̊i − x̊j
|̊xi − x̊j |

)
=

Id
|̊xi − x̊j |

− (̊xi − x̊j) t(̊xi − x̊j)
|̊xi − x̊j |3

(d× d block in a nd× nd matrix

The gradient of the interaction potential

Φ(x) =
ż

2

n∑
i=1

n∑
j=1,j ̸=i

Vovlap

( |̊xi − x̊j |
2

�
r

)
is given by

∂

∂x̊k
Φ(x) =

ż

4
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

) x̊k − x̊j
|̊xk − x̊j |

− ż

4
�
r

n∑
i=1,i ̸=k

V ′ovlap

( |̊xi − x̊k|
2

�
r

) x̊i − x̊k
|̊xi − x̊k|

=
ż

2
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

) x̊k − x̊j
|̊xk − x̊j |

= −vd−1
�
rd−1ż

n∑
j=1,j ̸=k

(
1− |̊xk − x̊j |

2

4
�
r
2

) d−1
2 x̊k − x̊j
|̊xk − x̊j |

1
|̊xk−x̊j |≤2

�
r

This is a continuous bounded function for any d ≥ 2.
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The second derivative of the interaction potential is a nd× nd matrix whose diagonal blocks
are

∂2

∂x̊2k
Φ(x) =

ż

4
�
r
2

n∑
j=1,j ̸=k

V ′′ovlap

( |̊xk − x̊j |
2

�
r

) (̊xk − x̊j)
|̊xk − x̊j |

t(̊xk − x̊j)
|̊xk − x̊j |

+
ż

2
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

)( Id
|̊xk − x̊j |

− (̊xk − x̊j) t(̊xk − x̊j)
|̊xk − x̊j |3

)

=
ż

2
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

) Id
|̊xk − x̊j |

+
ż

4
�
r
2

n∑
j=1,j ̸=k

(̊xk − x̊j) t(̊xk − x̊j)
|̊xk − x̊j |2

(
V ′′ovlap

( |̊xk − x̊j |
2

�
r

)
− 2

�
r

|̊xk − x̊j |
V ′ovlap

( |̊xk − x̊j |
2

�
r

))

We use the above relation between V ′′ovlap and V ′ovlap :

∂2

∂x̊2k
Φ(x) =

ż

2
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

) Id
|̊xk − x̊j |

+
ż

4
�
r
2

n∑
j=1,j ̸=k

(̊xk − x̊j) t(̊xk − x̊j)
|̊xk − x̊j |2

V ′ovlap

( |̊xk − x̊j |
2

�
r

)−(d− 1)

|̊xk−x̊j |

2
�
r

1− |̊xk−x̊j |
2

4
�
r
2

− 2
�
r

|̊xk − x̊j |


=
ż

2
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

) Id
|̊xk − x̊j |

− ż

2
�
r

n∑
j=1,j ̸=k

(̊xk − x̊j) t(̊xk − x̊j)
|̊xk − x̊j |2

V ′ovlap

( |̊xk − x̊j |
2

�
r

) (d− 1)|̊xk − x̊j |

4
�
r
2
− |̊xk − x̊j |2

+
1

|̊xk − x̊j |



Since

(d− 1)|̊xk − x̊j |

4
�
r
2
− |̊xk − x̊j |2

+
1

|̊xk − x̊j |
=

4
�
r
2
− (d− 2)|̊xk − x̊j |2

|̊xk − x̊j |
(
4

�
r
2
− |̊xk − x̊j |2

)

and V ′ovlap(u) = −2vd−1
�
rd
(
1− u2

) d−1
2 = −vd−1

�
r

2d−2

(
4

�
r
2
− 4

�
r
2
u2
) d−1

2

we get

∂2

∂x̊2k
Φ(x) =

ż

2
�
r

n∑
j=1,j ̸=k

V ′ovlap

( |̊xk − x̊j |
2

�
r

) Id
|̊xk − x̊j |

− (̊xk − x̊j) t(̊xk − x̊j)
|̊xk − x̊j |3

4
�
r
2
− (d− 2)|̊xk − x̊j |2

4
�
r
2
− |̊xk − x̊j |2


=
ż vd−1

�
rd

2d−1

n∑
j=1,j ̸=k

Id
|̊xk − x̊j |

(
4

�
r
2
− |̊xk − x̊j |2

) d−1
2

+
(̊xk − x̊j) t(̊xk − x̊j)

|̊xk − x̊j |3

(
4

�
r
2
− (d− 2)|̊xk − x̊j |2

)(
4

�
r
2
− |̊xk − x̊j |2

) d−3
2

The blocks out of the diagonal of the second derivative nd×nd matrix of the interaction potential
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are for i ̸= k and |̊xk − x̊i| ≤ 2
�
r :

∂2

∂x̊i∂x̊k
Φ(x) = = −vd−1

�
rd−1ż

∂

∂x̊i

n∑
j=1,j ̸=k

(
1− |̊xk − x̊j |

2

4
�
r
2

) d−1
2 x̊k − x̊j
|̊xk − x̊j |

= −vd−1
�
rd−1ż

∂

∂x̊i

(1− |̊xk − x̊i|2
4

�
r
2

) d−1
2 x̊k − x̊i
|̊xk − x̊i|


= −vd−1

�
rd−1ż

d− 1

4
�
r
2

(
1− |̊xk − x̊i|

2

4
�
r
2

) d−3
2 (̊xk − x̊i) t(̊xk − x̊i)

|̊xk − x̊i|

−

(
1− |̊xk − x̊i|

2

4
�
r
2

) d−1
2 (

Id
|̊xk − x̊i|

− (̊xk − x̊i) t(̊xk − x̊i)
|̊xk − x̊i|3

)

Again, these second derivatives are bounded as soon as d ≥ 3. For d = 2 the above strategy
involving stopping times separating collision times from times where some |̊xk− x̊i| can be equal
to 2

�
r is needed.
We have proved that the constraints are compatible in the sense of [9]. For d ≥ 3, thanks to

Theorems 2.2 and 2.3 from this paper, for every invertible (n+m)× (n+m) matrix θ and every
C2 function Φ with bounded derivatives Rn+m, the SDE

X(t) = X(0) + θW(t)− 1

2

∫ t

0
θtθ∇Φ

(
X(s)

)
ds+

∑
γ

∫ t

0
θtθ∇γ

(
X(s)

)
dLγ(s)

has a unique strong solution in Dm for every starting configuration x ∈ Dm. Local timeLγ

satisfies Lγ(·) =

∫ ·
0
1
γ
(
X(s)

)
=0
dLf (s) The above sum is over all constraints. Moreover,

1Dm(x)e
−Φ(x)dx is a reversible measure for the solution. This ensures the existence and re-

versibility of a solution of (Sdep
n ).

For d = 2, the same technics gives existence up to the first time when |̊xk− x̊i| = 2
�
r for some

pair of spheres. Then we have to use an existence theorem for SDE with Borel drift and without
local time up to the next collision time, and so on.

3.3 High-density regime of the small-particle bath: towards an optimal pack-
ing of finitely-many hard spheres

In Proposition 3.1, we saw that the log-density of the reversible measure µ̊ż of the n hard spheres
is proportional to the activity ż of the bath of particles (i.e., the medium) in which they evolve.
It is therefore natural to consider the asymptotic behaviour of the measure µ̊ż in a high-density
regime of the bath, that is for ż tending to ∞.

Heuristically, for a fixed activity ż, the measure µ̊ż favours the configurations with low energy
E. As ż increases, µ̊ż will concentrate more and more on hard spheres configurations with minimal
energy, as expressed in Proposition 3.9 below.

Let us first introduce the contact number cn(̊x) of an admissible configuration x̊ of n spheres
with radius r̊ as the number of its pairwise contacts:

cn(̊x) := #{(i, j) such that |̊xi − x̊j | = 2̊r, 1 ≤ i < j ≤ n}.
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Proposition 3.9. Assume that ρ ≤ ρ2 so that the energy function E contains only pair in-
teraction terms. Asymptotically in ż, the reversible probability measure µ̊ż defined in (3.1)
concentrates around admissible configurations which minimise the energy. More precisely, let
E∗n := inf{E (̊y) : ẙ is an admissible n-sphere configuration}. Then

∀ε, η > 0 ∃żc > 0 ∀ż > żc µ̊ż

({
ẙ ∈ D : E (̊y) ≤ E∗n + η

})
≥ 1− ε. (3.7)

Moreover, admissible n-sphere configurations who realise the minimal energy E∗n maximise the
contact number cn.

Proof. We first prove (3.7).

Since Zż :=
∫
D

e−żE(̊x)λ⊗n(dx̊) is a normalisation constant, one has

µ̊ż
(
{x̊ ∈ D : E (̊x) ≤ E∗n + η}c

)
=

∫
D
e−żE(̊x) 1E(̊x)>E∗n+η λ

⊗n(dx̊)∫
D
e−żE(̊x)λ⊗n(dx̊)

=

∫
D
e−ż
(
E(̊x)−(E∗n+η)

)
1E(̊x)>E∗n+η λ

⊗n(dx̊)∫
D
e−ż
(
E(̊x)−(E∗n+η)

)
λ⊗n(dx̊)

≤
∫
D
e−ż
(
E(̊x)−(E∗n+η)

)
1E(̊x)>E∗n+η λ

⊗n(dx̊)∫
D
e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)≤E∗n+ηλ

⊗n(dx̊)

≤
∫
D
e−ż
(
E(̊x)−(E∗n+η)

)
1E(̊x)>E∗n+η λ

⊗n(dx̊)

λ⊗n
(
{x̊ ∈ D : E (̊x) ≤ E∗n + η}

) =:
n(η, ż)

d(η)
.

Note that the denominator d(η) is positive and does not depend on ż. For the numerator, note
that for each fixed η, pointwise in x̊,

lim
ż↗∞

e−ż
(
E(̊x)−(E∗n+η)

)
1E(̊x)>E∗n+η = 0

Since x̊ 7→ e−ż
(
E(̊x)−(E∗n+η)

)
1E(̊x)>E∗n+η is uniformly bounded by the constant 1, which is λ⊗n-

integrable, the dominated convergence theorem implies that the numerator n(η, ż) vanishes as ż
increases. This completes the proof of (3.7).

Next, we investigate the shape of the admissible n-sphere configurations whose energy realises
the minimum E∗n. Recalling (3.5),

E (̊x) = nvd
�
rd −

∑
1≤i<j≤n

Vovlap

( |̊xi − x̊j |
2

�
r

)
.

Thus,

E∗ = inf
x̊∈D
E (̊x) = nvd

�
rd −max

x̊∈D

∑
1≤i<j≤n

Vovlap

( |̊xi − x̊j |

2
�
r

)
= nvd

�
rd − c(n, d) V∗ovlap ,

(3.8)

where
c(n, d) := max{cn(̊x), x̊ = {x̊1, . . . , x̊n} ∈ D ⊂ Rd}

is the maximum of the contact number of n non-overlapping identical spheres in Rd. Thus
the configurations x̊ that minimise the energy are maximising their contact number c(̊x), as
claimed.
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Figure 6: Favourite planar configurations with minimal energy E∗n for n = 4, 5, 6 and their induced
contact graphs with respectively 5, 7, 9 pair contacts. Optimal Kugelhopf configuration for n = 7.

The identification of the set of configurations whose contact number equals c(n, d) is a difficult
topic, even in low dimensions 2 and 3, as we present in the next examples.

Recall that c(n, d) is also the maximum number of edges that a contact graph of n non-
overlapping translations of B(0, 1) can have in Rd, see, e.g., the monograph [3] and [4, Chapter
3]. Using this approach, we now review in more detail the situation in the Euclidean spaces R2

and R3.

Example 3.10 (The planar case, d = 2). An explicit general formula for c(n, 2) was introduced
by Erdős in 1946, but rigorously established only in 1974 by Harborth, [12]:

c(n, 2) = ⌊3n−
√
12n− 3⌋, n ≥ 2.

In particular, one has

c(2, 2) = 1, c(3, 2) = 3, c(4, 2) = 5, c(5, 2) = 7, c(6, 2) = 9, c(7, 2) = 12.

Moreover, the hexagonal packing arrangement is a cluster configuration whose contact number
achieves c(n, 2) for all n, see Figure 6. But it also corresponds to clusters which realise the densest
packing. Nevertheless, the problem of recognising (all) contact graphs of unit disc packing is NP-
hard, see [6].

We now study the asymptotic behaviour of the minimal energy E∗ for small ρ. It means that
we expand the maximal overlap area obtained in (3.4)

V∗ovlap = 2
�
r 2
(
arccos

( 1

1 + ρ

)
− 1

(1 + ρ)2

√
ρ(2 + ρ)

)
as a function of ρ.

V∗ovlap = 2̊r2(1 + ρ)2
(
arccos

(
1− ρ

1 + ρ

)
− 1

(1 + ρ)2

√
2ρ
√
1 + ρ/2

)

Using the expansion for ρ ≪ 1 of the function arccos around the point 1, arccos(1 − x) =√
2x
(
1 + 1

12x+O(x2)
)
, we obtain

V∗ovlap = 2̊r2
(
(1 + ρ)2

√
2

ρ

1 + ρ

(
1 +

1

12

ρ

1 + ρ
+O(ρ2)

)
−
√
2ρ
√
1 + ρ/2

)
= 2̊r2

√
2ρ
(
(1 + 2ρ)(1− 1

2
ρ)(1 +

1

12
ρ)− (1 +

1

4
ρ)
)
+O(ρ5/2)

=
8
√
2

3
r̊2 ρ3/2 +O(ρ5/2).

The minimal energy E∗n is then given by

E∗n = nπ r̊2
(
1 + 2ρ− 8

√
2

3π

c(n, 2)

n
ρ3/2 +O(ρ2)

)
.
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Example 3.11 (The 3-dimensional case). The theoretical situation in R3 is mainly unsolved,
with no hope of obtaining an explicit general formula for c(n, 3) in terms of n. The only known
exact values are the trivial ones, that is:

c(2, 3) = 1, c(3, 3) = 3, c(4, 3) = 6, c(5, 3) = 9.

The largest known number of contacts for n = 6, 7, 8, 9 are 12, 15, 18, 21, respectively, see [4].
They correspond to clusters which also satisfy the property of being densest packing: the centres
of the spheres are the lattice points of a face-centred cubic lattice, see [4, Figure 1].

In [13], the authors study numerically the number and the structure of optimal finite-sphere
packings – called isoenergetic states – via exact enumeration. They underline the implications
for colloidal crystal nucleation.

To conclude this section, we recall the expression of the maximal overlap volume V∗ovlap
computed in Example 3.7:

V∗ovlap = 2π r̊3 ρ2
(
1 +

2

3
ρ
)
.

Therefore, by (3.8), the minimal energy E∗n is given by

E∗n = n
4

3
π r̊3(1 + ρ)3 − c(n, 3) 2π r̊3 ρ2

(
1 +

2

3
ρ
)
,

which leads to the following asymptotic expansion in ρ:

E∗n = n
4

3
π r̊3

(
1 + 3ρ+ 3

(
1− c(n, 3)

2n

)
ρ2 +O(ρ3)

)
, ρ≪ 1.

4 Numerical simulations

We created a companion GitLab page (https://lab.wias-berlin.de/zass/dynamics-of-spheres),
where the reader can find the code we wrote to generate illustrative movies that simulate various
planar random dynamics of the type studied in this paper. In particular, we propose illustrations
of Section 2, Section 3.2, and Section 3.3, that is:

• The two-type dynamics (S) of Brownian hard spheres in a Brownian particle bath and their
projections on the hard sphere system, for different values of ρ and ż. The short range of the
depletion attraction is clearly visible.

• The one-type dynamics (Sdep
n ) of Brownian hard spheres submitted to a gradient field derived

from the depletion interaction.

• The dynamics (S) of Brownian hard spheres in a Brownian particle bath with high density
ż, which induces a very high stability of the initial hard sphere cluster configuration, close to
a maximiser of its contact number.
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